PERIYAR UNIVERSITY
(NAAC 'A++" Grade with CGPA 3.61 (Cycle - 3)
State University - NIRF Rank 56 - State Public University Rank 25

SALEM -636 011

CENTRE FOR DISTANCE AND ONLINE EDUCATION

(CDOE)

MASTER OF COMPUTER APPLICATIONS

SEMESTER - |

CORE = I: LINUX AND SHELL PROGRAMMING

(Candidates admitted from 2024 onwards)

1 Periyar University — CDOE| Self-Learning Material

2 Periyar University — CDOE| Self-Learning Material

PERIYAR UNIVERSITY

CENTRE FOR DISTANCE AND ONLINE EDUCATION (CDOE)

MCA 2024 admission onwards

Core Course —|

LINUX AND SHELL PROGRAMMING

Prepared by:
Centre for Distance and Online Education (CDOE)
Periyar University

Salem - 636011.

3 Periyar University — CDOE| Self-Learning Material

LIST OF CONTENTS

UNIT

CONTENTS

PAGE

Basic bash Shell Commands: Interacting with the shell-
Traversing the file system-Listing files and directories-Managing
files and directories-Viewing file contents.

Basic Script Building: Using multiple commands-Creating a
script file-Displaying messages- Using variables-Redirecting input
and output-Pipes-Performing math-Exiting the script.

Using Structured Commands: Working with the if-then
statement-Nesting ifs-Understanding the test command-Testing
compound conditions-Using double brackets and parentheses-
Looking at case.

More Structured Commands: Looping with for statement-
Iterating with the until statement- Using the while statement-
Combining loops-Redirecting loop output.

Handling User Input: Passing parameters-Tracking
parameters-Being shifty-Working with options-Standardizing
options-Getting user input.

Script Control: Handling signals-Running scripts in the
background-Forbidding hang-ups - Controlling a Job-Modifying
script priority-Automating script execution.

45

Creating Functions: Basic script functions-Returning a value-
Using variables in functions- Array and variable functions-
Function recursion-Creating a library-Using functions on the
command line.

Writing Scripts for Graphical Desktops: Creating text menus-
Building text window widgets- Adding X Window graphics.

Introducing Sed and Gawk: Learning about the sed Editor-
Getting introduced to the gawk Editor-Exploring sed Editor basics.

97

Regular Expressions: Defining regular expressions-Looking at
the basics-Extending our patterns-Creating expressions.

Advanced Sed: Using multiline commands-Understanding the
hold space-Negating a command- Changing the flow-Replacing via
a pattern-Using sed in scripts-Creating sed utilities.

Advanced gawk: Reexamining gawk-Using variables in gawk-
Using structured commands- Formatting the printing-Working with
functions.

129

Working with Alternative Shells: Understanding the dash shell-
Programming in the dash shell- Introducing the zsh shell-Writing
scripts for zsh.

Writing Simple Script Utilities: Automating backups-Managing
user accounts-Watching disk space

165

4 Periyar University — CDOE| Self-Learning Material

Producing Scripts for Database, Web, and E-Mail: Writing
database shell scripts-Using the Internet from your scripts-
Emailing reports from scripts

Using Python as a Bash Scripting Alternative: Technical
requirements-Python Language- Hello World the Python way -
Pythonic arguments-Supplying arguments-Counting arguments-
Significant whitespace-Reading user input-Using Python to write to
files-String manipulation.

5 Periyar University — CDOE| Self-Learning Material

UNIT CONTENTS PAGE
1.1 Basic bash Shell Commands 7
1.2 Basic Script 14
1.3 Using Structured Commands 29
2.1 More Structured Commands 45
2.2 Handling User Input 57
2.3 Script Control 78
3.1 Creating Functions 97
3.2 Writing Scripts for Graphical Desktops 107
3.3 Introducing Sed and Gawk 112
4.1 Regular Expressions 129
4.2 Advanced Sed 140
4.3 Advanced gawk. 148
5.1 Working with Alternative Shells 165
5.2 Writing Simple Script Utilities 176
5.3 Producing Scripts for Database, Web, and E-Mail 188
5.4 Using Python as a Bash Scripting Alternative 202

6 Periyar University — CDOE| Self-Learning Material

Unit - |

Objectives :

Understand what a shell is and the role of Bash in Unix-like operating

systems.
Learn and practice basic Bash commands and navigation techniques.

Automate script execution and schedule tasks using cron jobs.

1.1Basic bash Shell Commands

Starting the Shell:

The default shell in many Linux distributions is the GNU bash shell.

The shell is a program that provides interactive access to the Linux system
and is typically started when a user logs in to a terminal.

The shell used depends on the user's configuration, as specified in the
“letc/passwd’ file. The last field in each entry of this file specifies the user's
default shell program.

Using the Shell Prompt:

After starting a terminal or logging into a Linux virtual console, you get access
to the shell command-line interface (CLI) prompt.

The default prompt symbol for the bash shell is the dollar sign ($), which

indicates that the shell is ready to accept your commands.

The prompt can also display additional information, such as the current user's

name and the system's name, which can be customized.

When you enter a shell command at the prompt, you need to press the Enter

key for the shell to execute the command.

7 Periyar University — CDOE| Self-Learning Material

Modifying the Shell Prompt:

The shell prompt is not static and can be customized to suit your preferences.

Interacting with the shell

Interacting with the bash Manual:

Most Linux distributions include an online manual for looking up information
on shell commands and GNU utilities. The ‘'man® command provides access
to the manual pages stored on the Linux system. You can use it by entering
‘man’ followed by a specific command name to access that utility's manual
entry.

Manual pages are displayed with a pager that allows you to navigate through
them using spacebar, Enter key, or arrow keys.

To exit the manual pages and return to the shell prompt, press the "q" key.
The 'man’ command can be used to view manual pages about itself by typing

‘man man.

Sections in Manual Pages:

The manual pages are divided into separate sections, each with a
conventional naming standard. These sections provide information about a
command's name, syntax, configuration, description, options, and more. Not
all commands have all the listed sections, and some may have additional

sections.

Searching for Commands:

If you can't remember the command name, you can search the manual pages
using keywords with the syntax ‘'man -k keyword'. For example, to find

commands related to terminals, you can use ‘man -k terminal.

8 Periyar University — CDOE| Self-Learning Material

Section Areas:

Manual pages are organized into section areas, each with an assigned
number. The lowest numbered section is typically provided for a command.
For example, (1) indicates executable programs or shell commands, while (7)

is for overviews, conventions, and miscellaneous.

Additional Resources:

In addition to ‘'man’ pages, there are also information pages called "info"
pages. Most commands accept the “-help™ or --help” option for quick help.
Several resources are available for reference, but detailed explanations may
be needed for basic shell concepts.

Traversing the file system

Traversing Directories:

The “cd” (change directory) command is used to navigate within the Linux
filesystem.lts syntax is straightforward: "cd destination'. If no destination is

specified, it takes you to your home directory.

Using Absolute Directory References: Absolute directory references start
from the root directory and are represented by a forward slash (/). For

example, "cd /usr/bin” takes you to the “/usr/bin” directory.

Using Relative Directory References: Relative references specify a
destination relative to your current location and do not start with a forward
slash (/). You can use directory names or special characters like ".." (parent
directory). For instance, ‘cd Documents™ moves to the "‘Documents’ directory

from your home directory.

Special Characters for Relative References:

", represents the current directory.

"..” represents the parent directory and is useful for moving up the directory

9 Periyar University — CDOE| Self-Learning Material

hierarchy.

¢+ Remember to use absolute references when you're new to the command line
and theLinux directory structure. As you become more familiar, you can
switch to relative references.

¢ You can also display your current directory with the "pwd” command, ensuring
you're in the right location before executing commands. Using relative

references is especially useful within your home directory.

Listing files and directories

Listing Files and Directories:
¢ To view files on the system, use the 'Is” (list) command. It can display basic
or detailed information about files and directories. You can also filter listings

based on names or patterns.

Displaying a Basic Listing:
¢ The basic 'Is’ command shows files and directories in your current directory.
By default, it lists non-hidden directories alphabetically.

¢+ Example:

“shell

$ls

Desktop Downloads Music Pictures Templates Videos

Documents examples.desktop my_script Public test_file

¢ You can use -F to flag directories with a slash and executables with an
asterisk for easy identification.

+ Hidden files (those starting with a dot) are not displayed by default. To show
them, use "-a".

¢ The -R’ option displays files in subdirectories as well.

10 Periyar University — CDOE| Self-Learning Material

Displaying a Long Listing:
¢ For more detailed information about each file or directory, use the "-I" option
with “Is".It provides data like file type, permissions, owner, group, size, and
modification time.
Filtering Listing Output:

¢ You can filter listings using text-matching strings and standard wildcard

characters.

¢ 7 matches a single character, and "*" matches any number of characters.

¢ Example:

““shell
$ s -l my_script

-rwxrw-r-- 1 christine christine 54 May 21 11:26 my_script

e File globbing, using brackets '[]°, allows for more advanced filtering. You
can specify choices or character ranges.

¢ Example:
“shell
$ Is -l f[ai]ll

-rw-rw-r-- 1 christine christine 0 May 21 13:44 fall

-rw-rw-r-- 1 christine christine 0 May 21 13:44 fill

¢ Use 'I" to exclude specific patterns from the filter.
+ File globbing is a powerful feature for searching files and can be used with

other shellcommands as well.

11 Periyar University — CDOE| Self-Learning Material

Managing files and directories

¢ The key points regarding managing files and directories, specifically creating
files, copying files, handling file links, renaming files, creating directories, and

deleting directories. Here's a concise summary:

Creating Files:

¢ You can create an empty file using the ‘touch® command, and you can specify
the filename.
¢+ The ‘touch” command can also be used to update the modification and

access times of a file.

Copying Files:

¢ The ‘cp’ command is used to copy files.
¢ The basic syntax of ‘cp” is ‘cp source destination'.

¢ Use the -i° option to prompt for confirmation when overwriting files.

¢ You can copy files to pre-existing directories or specify a different file name.

Handling File Links:

o Linux supports two types of file links: symbolic links and hard links.

¢ Symbolic links are separate files that point to another file's location.

o Hard links refer to the same physical file in different locations.

+ Symbolic links can span different physical media, while hard links cannot.

o You can use the In" command to create links.

Renaming Files:

¢ Torename afile, use the ‘'mv' command, specifying the old and new names.
¢+ The 'mv’' command can also move files to different directories.

o It preserves the file's content and attributes.

Creating Directories:

o - Use the ‘'mkdir command to create new directories.

12 Periyar University — CDOE| Self-Learning Material

¢ -You can create multiple nested directories at once using the "-p” option.

Deleting Directories:

¢ Toremove an empty directory, use the ‘rmdir’ command.

o For directories with content, you can use ‘rm -r" to recursively remove them.
¢ Be cautious when using 'rm -r’, as it can't be undone.

o This summary provides a quick overview of the key concepts related to

file anddirectory management in a Linux shell.

Viewing File Contents

Viewing the File Type

¢ Use the file' command to determine the type of a file.
o It can identify text files, directories, symbolic links, scripts, and binary
executable programs.

Viewing the Whole File

+ Todisplay the entire contents of a text file, use the "cat’ command.
¢ You can use parameters like "-n" to number lines, "-b™ to number lines with

text, and

T to replace tabs with "I,

Using the ‘'more” Command

¢ The ‘more’ command displays a text file one page at a time.

¢ Use the spacebar to navigate pages and "q" to quit.

Using the ‘less Command

¢ less’ is an advanced version of ‘more’, offering features like searching and
navigation.

13 Periyar University — CDOE| Self-Learning Material

¢ lItrecognizes arrow keys and Page Up/Page Down keys.
¢ It can display a file's contents before reading the entire file.

Viewing Parts of a File

o Use the 'taill command to view the last lines of a file.
¢ Use "-n" to specify the number of lines, and "-f° to monitor the file in real-time.
¢ Use the "head’ command to view the first lines of a file.

+ Both commands help when you need to focus on specific parts of a file.

1.2 Basic Script Building
Using multiple commands

+ The ability to run multiple commands and chain them together in a single step
is a fundamental aspect of shell scripting. While using semicolons to separate
commandsis useful for small tasks or one-off operations, creating a shell
script by combining multiple commands into a text file offers more

convenience and flexibility.

¢ Here's how you can create a shell script to achieve the same result as the
example you provided:
o 1. Open a text editor (e.g., nano’, 'vim’, ‘gedit’, or any other text editor of

your choice).

¢ 2. Create a new text file and enter the following content:
“bash #!/bin/bash

This is a simple shell script
Run the 'date’ command and display the current date and timedate

Run the 'who' command to display the list of logged-in

userswho

o Inthis script, #!/bin/bash’ is called a shebang, which specifies that the script

should be executed using the Bash shell.
14 Periyar University — CDOE| Self-Learning Material

o 3. Save the file with a ".sh" extension, for example, "my_script.sh."
¢ 4. Make the script executable by running the following command in your
terminal:
“bash

chmod +x my_script.sh

+ Now, you can run the script by simply typing:

“bash

Jmy_script.sh

o The script will execute both the "date’ and "'who commands, just like the
example you provided. However, the advantage of using a script is that you
don't need to manually type the commands every time you want to run them.

You can edit and reuse the script as needed.

+ Inamore complex script, you can include variables, conditionals, loops, and
functions to create powerful automation and process automation tasks. Shell
scripting is a versatile way to perform various system tasks and automate
repetitive actions.

Creating a script file

¢ Creating and running a shell script involves several steps, as you've

described. Here's a summarized version for study material:

Create a Shell Script:

¢ Use a text editor to create a new file for your shell script. Start with a

15 Periyar University — CDOE| Self-Learning Material

shebang line to specify the shell you're using. For example:
“bash
#!/bin/b

ash

¢ You can add comments to describe the purpose of the script.

Add Commands:

+ Enter your desired shell commands, one per line, in the script file. For
example:
“bash

This script displays the date and who's logged

ondate

who

Save the Script:

¢ Save the script with a ".sh" extension, for example, "my_script.sh."

Make it Executable:

¢ Use the ‘chmod™ command to make the script executable:

“bash

chmod +x my_script.sh

16 Periyar University — CDOE| Self-Learning Material

Run the Script:

¢ To execute the script, run it using "./" followed by the script filename:
“bash

Jmy_script.sh

Permissions Issues:

¢ If you encounter a "Permission denied" error, change the file's
permissions using

‘chmod' to give the owner execute permissions:

“bash

chmod u+x my_script.sh

Run the Script Again:

¢ Run the script again:

““bash

Jmy_script.sh

¢+ shell script is now ready and can be executed whenever needed. Comments
in the script help you understand the script's purpose and functionality,

making it easier to maintain and modify the script in the future.

Displaying messages

o In shell scripting, you can use the "echo’ command to display messages and
output text to the console. Here's a summary of using “echo” for displaying

messages in your shell scripts:
17 Periyar University — CDOE| Self-Learning Material

Basic Usage:

¢ You can use the ‘'echo’ command to display a simple text string. For example:
“bash

echo This is a test

¢ The output will be:

This is a test

Handling Quotes:

¢ When using quotes within your string, you should use the opposite type of
guote to delimit the string. For example:
“bash

echo "Let's see if this'll work"

o The output will be:

Let's see if this'll work

ST

¢ You can use either double quotes " or single quotes " to delimit your text

strings.

18 Periyar University — CDOE| Self-Learning Material

Adding Messages to Shell Scripts:

¢ You can incorporate ‘echo” statements into your shell scripts to provide

informative messages to users or to describe the script's actions. For example:

“bash
#!/bin/bas
h

This script displays the date and who's logged
onecho The time and date are:

date

echo "Let's see who's logged into the

system:"who

AN

Displaying Messages on the Same Line as Output:

+ To display a message on the same line as command output, you can use the
-n" option with "echo’. For example:
“bash

echo -n "The time and date are: "

NN

o This ensures that the echoed string and the command output are on the same
line.

¢ The output will be:

NN

The time and date are: Mon Feb 21 15:42:23 EST 2014

AN

s Using the "echo” command allows you to provide information, status updates, or error
messages within your shell scripts, making them more user-friendly and informative.

It is a valuable tool for interaction between scripts and users.

19 Periyar University — CDOE| Self-Learning Material

Using variables

¢ Using variables in shell scripts is a powerful way to store and manipulate data.

Here'sa concise summary of how to use variables in your shell scripts:

Environment Variables:

+ Environment variables are system-wide variables that store information like the
username, home directory, and search paths. You can access them in your
scripts using the "$" symbol. For example:

“bash

echo "User info for userid:
$USER"echo UID: $UID

echo HOME: $HOME

User Variables:

¢+ You can create your own variables within your shell scripts. These user
variables can hold values and are case-sensitive. Assign values to user
variables using the equal sign "= without any spaces. For example:
“bash
days=10
guest="Kati

e||

Referencing Variables:

+ When referencing the value of a variable, use the dollar sign "$". For example:

“bash

echo "The time and date are: $date"

20 Periyar University — CDOE| Self-Learning Material

Command Substitution:

¢+ You can assign the output of a command to a variable using command
substitution. This is done using backticks (\") or the "$()" format. For example:
“bash

today=$(date +%y%m%od)

¢ The ‘date’ command's output is assigned to the variable “today".

Subshells:

¢+ Command substitution creates a subshell to run the enclosed command.
Variables defined in your script are not available in subshells. Be aware of this
when working with subshells.

+ Using variables allows you to store, manipulate, and display data within your

shell scripts, making them more versatile and useful for various tasks.

Redirecting input and output

o In shell scripting, you can redirect input and output to and from files using
specific operators. Here's a concise summary of input and output redirection in

shell scripts:
Output Redirection:

o The "> symbol is used for output redirection. It allows you to save the
output of a command to afile.

o For example, to save the output of the "date” command to a file named
‘output.txt:

“bash

date > output.txt

o If the file already exists, using ">" will overwrite its content.
+ To append output to an existing file, use ">>:
“bash

21 Periyar University — CDOE| Self-Learning Material

who >> output.txt

Input Redirection:

¢ The "< symbol is used for input redirection. It allows you to provide
input to acommand from a file.

o For example, to count lines, words, and bytes in a file named “input.txt’
using the

‘wc command:
““bash

wc < input.txt

Inline Input Redirection:

¢ The << symbol allows you to provide data directly on the command line.
¢ You must specify a text marker (often referred to as a "here document") to
indicate the beginning and end of the data.

o For example, counting lines, words, and bytes using "wc™ with inline input
redirection:

“bash

wc << EOF
Line 1

Line 2

Line
3
EOF

+ The data entry continues until you enter the specified text marker ("EOF" in this

22 Periyar University — CDOE| Self-Learning Material

case).
o Output and input redirection are valuable techniques for manipulating data

within your shell scripts, and they are often used for logging, processing large

data sets, and interacting with external files.

Pipes
o Inshell scripting, piping allows you to send the output of one command as input
to another command. Piping is a powerful and efficient way to perform complex
operations by chaining commands together. Here's a brief overview of piping in

shell scripts:

Piping Symbol:

¢ The piping symbol is represented by "|’, which is often referred to as a "pipe."

Piping Syntax:
+ To pipe the output of ‘command1l’ to the input of ‘command2’, use the following

syntax:
““bash

commandl | command2

¢ The output from ‘commandl’ is immediately passed as input to ‘command2".

Example:

o In the provided example, the output of the 'rpm -qa° command (which lists
installed packages) is piped to the “sort” command to sort the list alphabetically:
“bash

rpm -ga | sort

¢ The sorted list is displayed in real-time, with no intermediate files or buffers.

23 Periyar University — CDOE| Self-Learning Material

Chaining Pipes:

¢+ You can chain multiple commands together using pipes. For example:

““bash

commandl | command2 | command3

ANNN

24 Periyar University — CDOE| Self-Learning Material

¢ Inthis case, the output from ‘commandl’ is passed to ‘command?2’, and the output

from ‘command2’ is passed to ‘command3’.

Pausing Output:

¢ When the output is too long to read at once, you can use text-paging commands
like

‘more’ to pause and read the data screen by screen:
““bash

commandl | command2 | more

+ This allows you to control the flow of data for easier reading.

Saving Output to a File:

¢ You can combine piping with output redirection to save the final output to a file.
For example:
“bash

commandl | command2 > output.txt

+ This sends the output of ‘commandl | command2 to a file called "output.txt.
¢ Piping is a fundamental concept in shell scripting and is widely used to process

data and execute complex tasks efficiently.

- Periyar University — CDOE| Self-Learning Material

Performing math

o Performing mathematical operations in shell scripts can be accomplished using
various methods. In the provided text, three different methods are explained:
“expr’, using square brackets, and using the "bc’ (bash calculator) command for

floating-point calculations. Here's a summary of each:

“expr’ Command:

o The 'expr command is a basic way to perform integer arithmetic in shell scripts.

¢ Itrecognizes various mathematical and string operators.

¢ To use it, you need to escape characters that may be misinterpreted by the shell
(e.g., expr5*27).

Using Square Brackets:

¢+ In bash, you can use square brackets to perform integer arithmetic ("$[operation
1)
+ This method simplifies integer arithmetic and doesn't require escaping operators.

¢ It's suitable for simple calculations but limited to integer arithmetic.

‘bc” (Bash Calculator) for Floating-Point Arithmetic:

+ The 'bc’ command is a full-featured calculator that supports floating-point
arithmetic.
+ You can access bc’ from the command line and set the scale (decimal places) for
results.
¢ The 'bc’ command can be used within shell scripts for more complex arithmetic
operations.
¢ Here's how to use "bc’ in shell scripts to perform floating-point arithmetic:
“bash
#!/bin/bash
varl=20
var2=3.14159

var3=$(bc << EOF
scale=4

- Periyar University — CDOE| Self-Learning Material

result = $varl * $var2

result

EOF

)

echo The final result is $var3

This script sets variables 'varl™ and ‘var2™ and then uses "bc™ with inline input
redirection to calculate "varl * var2'. The result is stored in the "var3" variable,
which is then displayed. "bc™ allows you to perform more complex calculations and
supportsfloating-point numbers.

These three methods provide different options for performing mathematical
operations in shell scripts, depending on your specific needs, whether it's simple

integer arithmetic, more advanced integer operations, or floating-point arithmetic.

Exiting the script

In shell scripting, you can gracefully exit a script using the "exit' command and
specify an exit status code to indicate the script's completion status. The exit status
isan integer value between 0 and 255 that is returned by the script to the calling

environment. Here's a summary of how to use the “exit' command:

Checking the Exit Status:

You can check the exit status of a command immediately after it has executed
using the special variable "$?°. A value of 0 typically indicates successful

completion, while non-zero values often indicate errors.

Common exit status codes and their meanings are given in Table 11-2 in the

providedtext.

Using the "exit” Command:

The “exit’ command allows you to set the exit status explicitly when ending a
script.

- Periyar University — CDOE| Self-Learning Material

¢ You can specify the desired exit status as a parameter to the "exit’ command.
o This is useful for indicating the outcome of your script and can be helpful when
your script is used in automated processes.
¢ Here's how to use the "exit' command in a script:
“bash
#!/bin/bash

Testing the exit status
varl=10

var2=30 var3=$[$varl
+ $var?]

echo The answer is $var3

exits

¢ Inthis example, the script will exit with an exit status of 5. When you check the exit
status using "echo $?°, you'll see the value is 5.

+ Keep in mind that exit status codes should typically be in the 0 to 255 range. If you
specify a value that exceeds this range, the shell will calculate the modulo
(remainder) of the value. For example, if you specify an exit status of 300, the
actual exit status will be 44 (300 modulo 256). It's a good practice to use
meaningful exit status codes to indicate success or specific types of errors in your
scripts, making it easier to handle script outcomes in automated workflows.

1.3 Using Structured Commands

Working with the if-then statement

+ The 'if-then” statementin a Bash script allows you to execute a block of commands
conditionally based on the exit status of a preceding command. here's how it
works:

o The 'if statement begins the conditional block and specifies the command to run.

- Periyar University — CDOE| Self-Learning Material

¢ The “then keyword marks the beginning of the commands to be executed if the
preceding command has a zero exit status (indicating success).

¢ The fi" statement marks the end of the "if-then’ block.

¢ The if statement doesn't evaluate whether a condition is true or false, as it might
in some other programming languages. Instead, it checks the exit status of the
command. If the exit status is zero (success), the commands in the "then" block
are executed. If the exit status is non-zero (failure), the commands in the ‘then
block areskipped.

¢+ In your script, you can have multiple commands within the “then” block. They are
treated as a block of code and are executed together if the exit status of the initial
command in the "if’ statement is zero.

+ Additionally, you can use the “else’ and ‘elif (else if) statements to provide
alternative actions when the initial command has a non-zero exit status. Here's the

basic structure:

““bash
if command1l; then

commands to run if commandl

succeedselse
commands to run if command1 fails
fi
o Or, with “elif":
“bash
if commandl; then

commands to run if commandl

succeedselif command2; then

commands to run if command1 fails and command2

succeedselse

commands to run if both commandl1 and command2 fail

- Periyar University — CDOE| Self-Learning Material

fi

ANNN

These statements allow you to add more flexibility to your script by specifying

different actions for various conditions.

Nesting ifs

Nesting if-then statements in shell scripting is a common practice to handle
multiple conditional situations. However, as the example you provided shows, it
can make thecode hard to read and follow, especially when dealing with multiple
conditions. To address this, you can use ‘elif statements to create a cleaner
and more organized structure for handling different conditions.

Here's a summary of what the example demonstrates:
1. The first script checks if a user exists in “/etc/passwd’, and if not, it checks for
the existence of a directory using nested if-then statements.

2. The second script improves the code by using “elif” statements instead of

nesting if-then statements, resulting in cleaner and more readable code.

3. The third script further enhances the code by adding an “else’ block within the
“elif” block to handle the case where the user doesn't exist and doesn't have a

directory.

The use of “elif statements makes it easier to handle multiple conditions and
provides a more structured and readable script. However, as mentioned in the
text, if you have a large number of conditions, you might want to consider using

the "‘case’ command for better code organization.

The ‘case’ command allows you to match a variable against multiple patterns,
making it a more suitable choice for handling complex conditional logic. It's
especiallyhelpful when you have a long list of possible values to compare. Here's
a simplified example of how you can use the ‘case’ command to achieve the same

outcome as the third script:

- Periyar University — CDOE| Self-Learning Material

““bash
#!/bin/bash

Testing the case command

testuser=NoSuchUser

case $testuser in

$(grep "$testuser" /etc/passwd)

echo "The user $testuser exists on this system.”

$(Is -d /home/$testuser 2>/dev/null)

echo "The user $testuser does not exist on this system."
echo "However, $testuser has a directory."

")
echo "The user $testuser does not exist on this system."

echo "And, $testuser does not have a directory."”

esac

¢+ Inthis script, the ‘case’ command compares the value of "testuser” against different
patterns. The *)" at the end acts as a catch-all for cases that don't match
the previous patterns. This approach can make your code more maintainable and

easierto follow when dealing with multiple conditions.

¢+ If you have a large number of conditions to check, the ‘case’ command is a better

choice than nesting numerous if-then statements or “elif” blocks.

Understanding the test command

¢+ In Bash scripting, you can use conditional statements like “if to evaluate various

conditions. To check conditions other than exit status codes of commands, you

- Periyar University — CDOE| Self-Learning Material

can use the ‘test’ command within “if-then” statements.

¢ The ‘test' command allows you to assess different conditions. If the condition is
true, the ‘testt command exits with a status code of 0, making the ‘if-then’
statement behave like those in other programming languages. If the condition is
false, the "test’ command exits with a non-zero status code, causing the ‘if-then
statement to exit.

[}

o+ Here's a basic format:

““bash

if test condition
then

commands

fi

NN

¢ You can also use square brackets [] to define test conditions without the

“test’command:

““bash

if [condition]
then

commands

fi

¢+ The 'testt and test conditions can evaluate numeric comparisons, string
comparisons, and file comparisons. Numeric comparisons involve operators
like
-eq, -ge, -gt, -le, -It', and "-ne’. String comparisons include =", 1=, "<,

AV

>

- Periyar University — CDOE| Self-Learning Material

-n’, and -z'. File comparisons check for file attributes, such as -d’, -e’, -f’, °
r,
8w, -0, -G, -nt", and “-ot".

¢ These conditions help you make decisions and control the flow of your Bash

scripts.

Testing compound conditions

¢ The provided shell script demonstrates the use of the AND Boolean operator
((&&") to combine two conditions in an “if-then” statement. Here's a summary of
what the script does:

1. It checks if the user's home directory ($HOME") exists.

2. It checks if there's a file named "testing" in the user's home directory
($HOME")

and

+ whether the user has write permissions for that file.

¢+ If both of these conditions are met, the script will print "The file exists and you can

write to it." Otherwise, it will print "I cannot write to the file."

¢ To summarize, the script uses the AND Boolean operator to ensure that both
conditions must be TRUE for the ‘then’ section to execute. If either of the

conditions is FALSE, the “else” section will be executed.

¢ You can adapt this script as an example of using compound tests with the AND
operator. It's a common practice to check multiple conditions before performing

certain actions in shell scripts.

Using double brackets and parentheses

¢ The provided information explains two advanced features that you can use in "if-

then™ statements in Bash:

- Periyar University — CDOE| Self-Learning Material

Double Parentheses for Mathematical Expressions:

¢ You can use double parentheses *((...))" to incorporate advanced mathematical

expressions in your comparisons.

o Double parentheses allow for a wide range of mathematical operators and
expressions, including post-increment, post-decrement, pre-increment, pre-
decrement, logical negation, exponentiation, bitwise shifts, bitwise Boolean

operations, logical AND, and logical OR.

¢+ You can use double parentheses in an 'if statement to perform complex

mathematical comparisons and assignments. For example:

““bash

Example of using double parentheses for mathematical comparisons
vall=10

if (($vall **2>090))
then

((val2 =$vall ** 2))
echo "The square of $vall is $val2"

fi

Double Brackets for Advanced String Handling and Pattern
Matching:

o Double brackets °[[...]]] provide advanced features for string comparisons,
including pattern matching.

¢ You can use double brackets for string comparisons and apply regular expressions

tomatch strings.

¢ In the example provided, '[[$USER == r*]]" is used to match the "$USER’

environment variable to see if it starts with the letter "r." If it does, the "then” section

- Periyar University — CDOE| Self-Learning Material

isexecuted.

““bash

Example of using double brackets for string comparisons with pattern
matchingif [[SUSER == r*]]

then

echo "Hello $USER"
else

echo "Sorry, | do not know you"

fi

¢ It'simportant to note that while double brackets work well in the Bash shell, not all
shells support this feature. Double brackets are particularly useful when you need

to perform complex string comparisons and pattern matching in your scripts.

Looking at case

¢ The case’ command in Bash is a more concise and cleaner way to handle multiple
conditions for a single variable, as opposed to writing a lengthy ‘if-then-else’

statement. Here's a summary of how to use the ‘case’ command:

o Original "if-then-else” example:

“bash

if [SUSER = "rich" |

then

echo "Welcome $USER"

echo "Please enjoy your visit"

- Periyar University — CDOE| Self-Learning Material

elif [SUSER = "barbara"]
then

echo "Welcome $USER"
echo "Please enjoy your visit"
elif [SUSER = "testing" |

then
echo "Special testing account”

elif [SUSER = "jessica" |
then

echo "Do not forget to logout when you're done"

else

echo "Sorry, you are not allowed here"
fi

+ Using the ‘case’ command for the same purpose:

““bash

case $USER in

rich | barbara)
echo "Welcome, $USER"

echo "Please enjoy your visit";;

testing)

echo "Special testing account";;

jessica)

echo "Do not forget to log off when you're done™;;
")

echo "Sorry, you are not allowed here";;

esac

- Periyar University — CDOE| Self-Learning Material

+ Key points about the "case’ command:

¢+ Itallows you to compare a single variable against different patterns.

¢ You can list multiple patterns on the same line using the °|" operator to
separatethem.

¢ The *)" pattern serves as a catch-all for values that don't match any of the
specified patterns.

+ For each pattern that matches the variable, you can specify the commands to

execute using ;.

¢ The ‘case’ command provides a more efficient and readable way to handle
multiple conditions for the same variable, making your scripts cleaner and more

maintainable.

Unit Summary

Structured commands allow you to alter the normal flow of shell script execution. The
most basic structured command is the if-then statement. This statement provides a
command evaluation and performs other commands based on the evaluated

command’s output.

You can expand the if-thenstatement to include a set of commands the bash shell exe-
cutes if the specified command fails as well. The if-then-else statement executes

commands only if the command being evaluated returns a non-zero exit status code.

You can also link if-then-else statements together, using the elif statement. The elifis
equivalent to using an else if statement, providing for additional checking of whether

the original command that was evaluated failed.

N most scripts, instead of evaluating a command, you’ll want to evaluate a condition,
suchas a numeric value, the contents of a string, or the status of a file or directory.
The test command provides an easy way for you to evaluate all these conditions. If
the condition evaluates to a TRUE condition, the testcommand produces a zero exit
status code for the if-then statement. If the condition evaluates to a FALSE condition, the

test command produces a non-zero exit status code for the if-thenstatement.

- Periyar University — CDOE| Self-Learning Material

The square bracket is a special bash command that is a synonym for the testcommand.
You can enclose a test condition in square brackets in the if-then statement to test for

numeric, string, and file conditions.

The double parentheses command provides advanced mathematical evaluations
using additional operators. The double square bracket command allows you to perform

advanced string pattern-matching evaluations.

Let us sum up:

The GNU bash shell is a program that provides interactive access to the Linux
system. It runs as aregular program and is normally started whenever a user logs in

to a terminal.

The rmdirhas no -ioption to ask if you want to remove the directory. This is one reason
it is helpful that rmdirremoves only empty directories.You can also use the rm command

on entire non-empty directories.

Check your progress
PART -A
1. Which command is used to change the current directory in a bash shell?*

A) cd B) Is C) mv D) pwd

2. What does the command pwd do in a bash shell?**
A) Changes the password B) Prints the current working directory

C) Lists the files in a directory D) Deletes a file

3. Which command lists all files, including hidden ones, in a directory?*

A)ls B) Is -l C)ls-a D) Is -h

- Periyar University — CDOE| Self-Learning Material

4. Which command is used to create a new directory in bash?*

A) mkdir B) rmdir C) touch D) rm

5. Which command is used to display the contents of a file in the terminal?*

A) cat B) Is C)rm D) cp

6. Which symbol is used to separate multiple commands on a single line in bash?*

A); B) & C)| D) #

7. What is the correct file extension for a bash script?*

A) .sh B) .bash C) .script D) .txt

8. Which command is used to display a message in a bash script?*

A) echo B) print C) show D) display

9. How do you assign a value to a variable in bash?*

A) variable = value B) variable=value C) $variable = value D) var

value

10. Which symbol is used to redirect the output of a command to a file?*

A) > B) < Ol D) &

11. What is the purpose of the pipe (|) command in bash?**
A) To run commands in the background B) To combine two files
C) To send the output of one command as input to another command

D) To terminate a process

- Periyar University — CDOE| Self-Learning Material

12. Which command is used to perform arithmetic operations in a bash script?*

A) math B) calc C) expr D) compute

13. Which command is used to exit a script in bash?*

A) exit B) quit C) stop D) end

14. What is the basic syntax of an if-then statement in bash?*
A) if [condition]; then ... fi B) if (condition) { ... }

C) if [condition] { ... } endif D) if (condition); then ... done

15. How do you nest if statements in bash?*
A) By using elif B) By using multiple if statements

C) By using case D) By using switch

16. Which command is used for evaluating conditions in bash scripts?*

A) test B) check C) eval D) condition

17. Which operator is used to test compound conditions in bash?*

A) && B) || C) both Aand B D) either Aor B

18. What is the difference between single [and double [[brackets in bash?**
A) There is no difference.

B) Double brackets provide additional functionality.

C) Single brackets are used for strings only.

D) Double brackets are used for arithmetic only.

19. Which command is used to perform pattern matching in bash?*

A) match B) case C) switch D) pattern

- Periyar University — CDOE| Self-Learning Material

Here are the answers:

1.A) 2.B) 3.C) 4.A) 5A) 6.A) 7.A) 8.A) 9.B) 10.A) 11.
C) 12.C) 13.A) 14.A) 15.A) 16.A) 17.C) 18.B) 19.B)

Self Assessment Questions

Write difference between Sof and Hard links ?
Difference between Linux and Windows
Important feature of Linux OS

How to traverse the file system in Linux ?

1.

2

3

4

5. Compare local variable and Global variable.

6 Define wildcard character with examples.

7 Write any 10 shell commands with example.

8 Explain Redirecting Input and Output with example.
9 Explain floating point solution with example.

10. Brief explain if statements with examples.

Glossary

1.7Is

- *Description**: Lists the contents of a directory.
- *Usage**: 'Is [options] [directory]’

- **Qptions**: "-|" (long format), -a" (include hidden files), -h" (human-readable sizes).

2. cd’
- *Description**: Changes the current directory.

- *Usage**: “cd [directory]’

3. pwd’
- *Description**: Prints the current working directory.

~

- *Usage**: ‘pwd

4. “mkdir’

- *Description**: Creates a new directory.

- Periyar University — CDOE| Self-Learning Material

- *Usage**: ‘'mkdir [directory]

5. ‘'rmdir’
- *Description**: Removes an empty directory.

- *Usage**: ‘rmdir [directory]’

6. rm

- *Description**: Removes files or directories.

- **Usage**: ‘rm [options] [file/directory]’

- **Qptions**: “-r" (recursive, for directories), "-f (force).

7.°¢cp
- *Description**: Copies files or directories.
- *Usage**: "cp [options] [source] [destination]

- **Qptions**: "-r" (recursive), -i" (interactive).

8. mv
- *Description**: Moves or renames files or directories.

- *Usage**: ‘'mv [source] [destination]’

9. ‘touch’
- *Description**: Creates an empty file or updates the timestamp of an existing file.
- **Usage**: “touch [file]

10. ‘cat’
- *Description**; Concatenates and displays the content of files.
- *Usage**: “cat [file]

11. ‘'more’
- *Description**: Views the content of a file one page at a time.

- *Usage**: ‘'more [file]’

- Periyar University — CDOE| Self-Learning Material

12. 'less’
- *Description**: Views the content of a file with backward movement capability.

- *Usage**: “less [file]

13. "head”
- *Description**: Displays the first few lines of a file.
- *Usage**: "head [file]’

14. “tail’
- *Description**: Displays the last few lines of a file.
- *Usage**: “talil [file]’

15. "echo’
- *Description**: Displays a line of text or the value of a variable.

- *Usage**: "echo [text]

16. ‘grep
- *Description**: Searches for a pattern in files.
- **Usage**: "grep [options] [pattern] [file]’

- **Qptions**: "-i" (ignore case), "-r (recursive), -v' (invert match).

17. “find®
- *Description**: Searches for files and directories.

- *Usage**: “find [path] [options] [expression]’

18. ‘chmod”
- *Description**: Changes file permissions.

- *Usage**: ‘chmod [permissions] [file]
19. ‘chown’
- *Description**: Changes file owner and group.

- *Usage**: ‘chown [owner][:group] [file]’

20. "df’

- Periyar University — CDOE| Self-Learning Material

- *Description**: Displays disk space usage.
- *Usage**: "df [options]

- **Qptions**: "-h" (human-readable).

Open-source e-content links:

https://www.techtarget.com/searchdatacenter/definition/bash-Bourne-Again-Shell

https://opensource.com/resources/what-bash

books

1.Pro Bash Programming: Scripting the Linux Shell by Chris F.A. Johnson and Jayant

Kumar
2."The Linux Command Line: A Complete Introduction” by William E. Shotts Jr.

UNIT = I

% Objective:
e Enhance the script’s readability and maintainability by organizing commands and
functions logically.

e Improve the script's interaction with users by effectively managing input and
providing clear instructions and feedback.

e Manage the execution flow of the script efficiently, allowing for better control and
error handling.

2.1 More Structured Commands
Looping with For Statement :

Iterating through a series of commands is a common programming practice. Often,
you need to repeat a set of commands until a specific condition has been met, such as

processing all the files in a directory., all the

The bash shell provides the for command to allow you to create a loop that iterates
through a series of values. Each iteration performs a defined set of commands using one

of the values in the series. Here’s the basic format of the bash shell for command:

- Periyar University — CDOE| Self-Learning Material

https://www.techtarget.com/searchdatacenter/definition/bash-Bourne-Again-Shell
https://opensource.com/resources/what-bash

for var in list
do

commands
done

You supply the series of values used in the iterations in the list parameter. You can

specify the values in the list in several ways.
Reading values in alist :

The most basic use of the for command is to iterate through a list of values defined within

the for command itself:

$cat testl
#!/bin/bash
basic for command
for test in Akshaya Dhanush Gokul Gopika Gowri Gowtham
do
echo The next state is $test
done
$ Jtestl
The next state is Akshaya
The next state is Dhanush
The next state is Gokul
The next state is Gopika
The next state is Gowri
The next state is Gowtham
$

Reading complex values in a list

There are times when you run into data that causes problems. Here'’s a classic example

of what can cause problems for shell script programmers:
$ cat badtestl
#!/bin/bash

another example of how not to use the for command

- Periyar University — CDOE| Self-Learning Material

for test in | don't know if this’ll work
do
echo "word:$test"
done
$./badtestl
word:|
word:dont know if thisll

word:work

Reading complex values in a list :

» The shell saw the single quotation marks within the list values and attempted to
use them to define a single data value, and it really messed things up in the

process.
» You have two ways to solve this problem:

P Use the escape character (the backslash) to escape the single quotation

mark.

» Use double quotation marks to define the values that use single quotation

marks.

Neither solution is all that fantastic, but each one helps solve the problem:
$ cat test2

#!/bin/bash

another example of how not to use the for command

for test in I don\'t know if "this'll" work

do

vV v v v v v'v

echo "word:$test"

- Periyar University — CDOE| Self-Learning Material

>

done

Output

>

vV v v v v v

$.Jtest2
word:|
word:don't
word:know
word:if
word:this'll
word:work

$

Reading a list from a variable :

vV vV v v v v v .Y

v

Often what happens in a shell script is that you accumulate a list of values stored
in a variable and then need to iterate through the list. You can do this using the for

command as well:

$ cat testd

#!/bin/bash

using a variable to hold the list
list=""Salem Erode Namakkal Dharmapuri "
list=$list " Kallakurichi“

for state in $list

do

echo "Have you ever visited $state?*

done

Output

$./test4

Have you ever visited Salem?
- Periyar University — CDOE| Self-Learning Material

Have you ever visited Erode?
Have you ever visited Namakkal?
Have you ever visited Dharmapuri?
Have you ever visited Kallakurichi?
$
» The $list variable contains the standard text list of values to use for the iterations.

» Notice that the code also uses another assignment statement to add (or
concatenate) an item to the existing list contained in the $list variable.

» This is a common method for adding text to the end of an existing text string

stored in a variable.

Reading values from a command :

» $cattestb
#!/bin/bash
reading values from a file
file="states"
for state in $(cat $file) do
echo "Visit beautiful $state”
done
$ cat states
Alabama
Alaska

Arizona

vV vV v vV v vV v v v v v

Arkansas

This example uses the cat command in the command substitution to display the
contents of the file states. Notice that the states file includes each state on a separate
line, not sepa- rated by spaces. The for command still iterates through the output of the

cat command one line at a time, assuming that each state is on a separate line.

- Periyar University — CDOE| Self-Learning Material

Colorado

Connecticut

Delaware

Florida

Georgia

$./ltests

Visit beautiful Alabama
Visit beautiful Alaska
Visit beautiful Arizona
Visit beautiful Arkansas
Visit beautiful Colorado
Visit beautiful Connecticut
Visit beautiful Delaware

Visit beautiful Florida

vV vV v vV vV vV vV v vV vV v vV v v Vv

Visit beautiful Georgia

v

$
Changing the field separator :

P The cause of this problem is the special environment variable IFS, called the

internal field separator.

» The IFS environment variable defines a list of characters the bash shell uses as

field separators.
» By default, the bash shell considers the following characters as field separators:
» A space
» Atab
» A newline

» Eg. IFS=%$'\n*

- Periyar University — CDOE| Self-Learning Material

» IFS=%$'\n";;“

P This assignment uses the newline, colon, semicolon, and double

guotation mark characters as field separators.
» Reading a directory using wildcards

» Finally, you can use the for command to automatically iterate through a directory of
files. To do this, you must use a wildcard character in the file or pathname. This

forces the shell to use file globbing. .

$cat test6

iterate through all the files in a directory
for file in /homel/rich/test/* do

if [-d "$file"] then

echo "$file is a directory"

elif [-f "$file"] then

echo "$file is a file"

vV vV v v v v v .Y

fi done

output $./test6

/home/rich/test/dirl is a directory
/home/rich/test/myprog.c is afile
/home/rich/test/myprog is a file
/homel/rich/test/myscript is a file
/home/rich/test/newdir is a directory
/home/rich/test/testdir is a directory
/home/rich/test/testing is afile
/home/rich/test/testprog is a file

/home/rich/test/testprog.c is a file

- Periyar University — CDOE| Self-Learning Material

$ The for command iterates through the results of the /home/rich/test/* listing.
The while Command :

e The while command is somewhat of a cross between the if-then statement and the

for loop.

¢ The while command allows you to define a command to test and then loop through
a set of commands for as long as the defined test command returns a zero exit

status.
e |t tests the test command at the start of each iteration.

e When the test command returns a non- zero exit status, the while command stops

executing the set of commands.
Basic while format

Here’s the format of the while command:
while test command

do

other commands

done

Example

The most common use of the test command is to use brackets to check a value of a

shell variable that’s used in the loop commands:
$ cat test10

#!/bin/bash

while command test

varl=10

while [$varl -gt 0] do

echo $varl

varl=$[$varl - 1] done

- Periyar University — CDOE| Self-Learning Material

$./test10
The until Command

» The until command works in exactly the opposite way from the while command.
The until command requires that you specify a test command that normally
produces a non- zero exit status. As long as the exit status of the test command is
non-zero, the bash shell executes the commands listed in the loop. When the test

command returns a zero exit status, the loop stops.
» As you would expect, the format of the until command is:
until test commands
do
other commands
done

» Similar to the while command, you can have more than one test command in the
until command statement. Only the exit status of the last command determines if

the bash shell executes the other commands defined.

Example

» The following is an example of using the until command:

$ cat test12

#!/bin/bash

using the until command

varl=100

until [$varl -eq 0] do

echo $varl

varl=$[$varl - 25] done

$./test12

Nesting Loops

- Periyar University — CDOE| Self-Learning Material

» A loop statement can use any other type of command within the loop, including

other loop commands. This is called a nested loop.

P Care should be taken when using nested loops, because you're performing an
iteration within an iteration, which multiplies the number of times commands are

being run.
» Here’s a simple example of nesting a for loop inside another for loop:
$ $ cat test14
#!/bin/bash
nesting for loops
for((a=1;a<=3;a++))do
echo "Starting loop $a:"
for(b=1;b<=3;b++))do
echo" Inside loop: $b" done
Done
Output
$./testl4
Starting loop 1:
Inside loop: 1
Inside loop: 2
Inside loop: 3
Starting loop 2:
Inside loop: 1
Inside loop: 2
Inside loop: 3
Starting loop 3:

Inside loop: 1

- Periyar University — CDOE| Self-Learning Material

Inside loop: 2
Inside loop: 3
$
Controlling the Loop:
» The break command
» The continue command

Each command has a different use in how to control the operation of a loop. The following
sections describe how you can use these commands to control the operation of your

loops.
» The break command

» The break command is a simple way to escape a loop in progress. You can use
the break command to exit any type of loop, including while and until loops.

» You can use the break command in several situations. This section shows each of

these methods.
Break command
$ cat test17 #!/bin/bash

breaking out of a for loop

forvarlin12345678910do

if [$varl —eq 5] then

break

fi

echo "lteration number: $varl" done

echo "The for loop is completed”

- Periyar University — CDOE| Self-Learning Material

Output

$ Jtestl7

[teration number: 1
Iteration number: 2
Iteration number: 3
Iteration number: 4

The for loop is completed
$

The continue command

» The continue command is a way to prematurely stop processing commands inside
of a loop but not terminate the loop completely.

P This allows you to set conditions within a loop where the shell won’t execute

commands.
» Here’s a simple example of using the continue command in a for loop:

When the conditions of the if-then statement are met (the value is greater than 5 and less
than 10), the shell executes the continue command, which skips the rest of the

commands in the loop, but keeps the loop going.

When the if-then condition is no longer met, things return to normal.

Example
$ cat test21 #!/bin/bash
using the continue command
for ((varl = 1; varl < 15; varl++))
do
if [$varl -gt 5] && [$varl -It 10] then

continue

- Periyar University — CDOE| Self-Learning Material

fi

echo "lteration number: $varl"
done

» $./test2l

Processing the Output of a Loop :

P Finally, you can either pipe or redirect the output of a loop within your shell script.

You do this by adding the processing command to the end of the done command:
for file in /home/rich/* do
if [-d "$file"] then
echo "$file is a directory" elif
echo "$file is a file"
fi
done > output.txt

» Instead of displaying the results on the monitor, the shell redirects the results of the

for command to the file output.txt.

P Consider the following example of redirecting the output of a for command to a file:
$ cat test23 #!/bin/bash
redirecting the for output to a file
for ((a=1;a<10;at+))do
echo "The number is $a" done > test23.txt
echo "The command is finished."

> $./test23

» The command is finished.

P $ cat test23.txt The number is 1 The number is 2 The number is 3 The number is 4
The number is 5 The number is 6 The number is 7 The number is 8 The number is
9

- Periyar University — CDOE| Self-Learning Material

> 5

P The shell creates the file test23.txt and redirects the output of the for command
only to the file. The shell displays the echo statement after the for command just as

normal.
2.2 Handling User Input:

« Passing parameters

+ Tracking parameters

* Being shifty

* Working with options

» Standardizing options

» Getting user input
Passing Parameters

» The most basic method of passing data to your shell script is to use command line
parameters. Command line parameters allow you to add data values to the

command line when you execute the script:
+ $./addem 10 30

* This example passes two command line parameters (10 and 30) to the script
addem. The script handles the command line parameters using special variables.
The following sections describe how to use command line parameters in your bash
shell scripts.

Reading parameters

* The bash shell assigns special variables, called positional parameters, to all of

the command line parameters entered.
» This includes the name of the script the shell is executing.

* The positional parameter variables are standard numbers, with $0 being the
script’s name, $1 being the first parameter, $2 being the second parameter,

and so on, up to $9 for the ninth parameter.

- Periyar University — CDOE| Self-Learning Material

A simple example of using one command line parameter in a shell script
$ cat testl.sh

#!/bin/bash

using one command line parameter

factorial=1

for ((number = 1; number <= $1 ; number++)) do

factorial=$[$factorial * $number] done

echo The factorial of $1 is $factorial

$

$.Jtestl.sh 5

The factorial of 5 is 120

$

You can use the $1 variable just like any other variable in the shell script.

The shell script automatically assigns the value from the command line

parameter to the variable; you don’t need to do anything with it.

If you need to enter more command line parameters, each parameter must be separated

by a space on the command line:

Result

$ cat test2.sh

#!/bin/bash

testing two command line parameters
total=$[$1 * $2]

echo The first parameter is $1. echo The second parameter is $2. echo The total
value is $total.

$

$./test2.sh 25

- Periyar University — CDOE| Self-Learning Material

* The first parameter is 2. The second parameter is 5. The total value is 10.
c $
Reading the script name

You can use the $0 parameter to determine the script name the shell started from the
command line. This can come in handy if you're writing a utility that can have multiple

functions.
* $cattests.sh
« #l/bin/bash
» # Testing the $0 parameter #
» echo The zero parameter is set to: $0 #
+ $
* $bash test5.sh
* The zero parameter is set to: test5.sh
c $
+ $./test5.sh
* The zero parameter is set to: ./test5.sh
c $
Testing parameters

Be careful when using command line parameters in your shell scripts. If the script is

run without the parameters, bad things can happen:
$./addem 2
Jaddem: line 8: 2 +
syntax error: operand expected (error token is " ")
The calculated value is

$

- Periyar University — CDOE| Self-Learning Material

When the script assumes there is data in a parameter variable, and no data is present,

most likely you'’ll get an error message from your script. This is a poor way to write scripts.
+ Always check your parameters to make sure the data is there before using it:
+ $cattest7.sh
+ #l/bin/bash
+ # testing parameters before use #
* if[-n"$1"] then
» echo Hello $1, glad to meet you. else
» echo "Sorry, you did not identify yourself. "
o fi
+ $
+ $./test7.sh Rich
+ Hello Rich, glad to meet you.
c $
* $./test7.sh
* Sorry, you did not identify yourself.
+ $

* In this example, the -n test evaluation was used to check for data in the $1

command line parameter.

Using_Special_Parameter_Variables

* A few special bash shell variables track command line parameters. This section

describes what they are and how to use them.
+ Counting parameters

* As you saw in the last section, you should verify command line parameters before
using them in your script. For scripts that use multiple command line parameters,

this checking can get tedious.

- Periyar University — CDOE| Self-Learning Material

* Instead of testing each parameter, you can count how many parameters were
entered on the command line. The bash shell provides a special variable for this

purpose.
Example

* The special $# variable contains the number of command line parameters included
when the script was run. You can use this special variable anywhere in the script,

just like a nor- mal variable:
+ $cattest8.sh
« #l/bin/bash
« # getting the number of parameters #
* echo There were $# parameters supplied.
c $
Example
+ $./test8.sh
* There were 0 parameters supplied.

- 3

$./test8.sh12345
» There were 5 parameters supplied.

- 3

$./test8.sh 12345678910
* There were 10 parameters supplied.

- $

$./test8.sh "Rich Blum"
* There were 1 parameters supplied.
+ $

Now you have the ability to test the number of parameters present before trying to use
them:

- Periyar University — CDOE| Self-Learning Material

+ $cat test9.sh
+ #l/bin/bash
* # Testing parameters #
o if[$# -ne 2] then
+ echo
» echo Usage: test9.sh a b echo
+ else
+ total=$[$1 + $2] echo
» echo The total is $total echo
o fi#
$
Output
* $bash test9.sh
+ Usage: test9.shab
* $bash test9.sh 10
+ Usage: test9.shab
* $bash test9.sh 10 15
* The total is 25
c %

* The if-then statement uses the -ne evaluation to perform a numeric test of the
command line parameters supplied. If the correct number of parameters isn't

present, an error message displays showing the correct usage of the script.
* $cattestl0.sh
« #l/bin/bash
* # Grabbing the last parameter #

s params=$#

- Periyar University — CDOE| Self-Learning Material

echo

echo The last parameter is $params
echo The last parameter is ${!#}
echo#

$

$ bash testl0.sh 12345

The last parameter is 5 The last parameter is 5
$

$ bash test10.sh

The last parameter is 0

The last parameter is test10.sh

$

Grabbing all the data

In some situations you want to grab all the parameters provided on the command
line. Instead of having to mess with using the $# variable to determine how many
parameters are on the command line and having to loop through all of them, you

can use a couple of other special variables.

The $* and $@ variables provide easy access to all your parameters. Both of these

variables include all the command line parameters within a single variable.

The $* variable takes all the parameters supplied on the command line as a single
word. The word contains each of the values as they appear on the command line.
Basically, instead of treating the parameters as multiple objects, the $* variable

treats them all as one parameter.

The $@ variable, on the other hand, takes all the parameters supplied on the
command line as separate words in the same string. It allows you to iterate
through the values, separating out each parameter supplied. This is most often

accomplished using the for command.

- Periyar University — CDOE| Self-Learning Material

The shell sets the $# variable to the number of parameters entered on the
command line. The $* variable contains all the parameters as a single string,

and the $@ variable contains all the parameters as separate words.

Being Shifty

done

Another tool you have in your bash shell tool belt is the shift command. The bash
shell provides the shift command to help you manipulate command line parameters.
The shift command literally shifts the command line parameters in their

relative positions.

When you use the shift command, it moves each parameter variable one position
to the left by default. Thus, the value for variable $3 is moved to $2, the value for
variable $2 is moved to $1, and the value for variable $1 is discarded (note that

the value for variable $0, the program name, remains unchanged).

$ cat test13.sh

#!/bin/bash # demonstrating the shift command echo

count=1
while [-n "$1"]
do

« echo "Parameter #$count = $1"
+ count=$[$count + 1]

* shift

$

$./testl3.sh rich barbara katie jessica
Parameter #1 = rich

Parameter #2 = barbara

Parameter #3 = katie

Parameter #4 = jessica

- Periyar University — CDOE| Self-Learning Material

- $

$ cat testl4d.sh
#!/bin/bash
demonstrating a multi-position shift
echo
echo "The original parameters: $*" shift 2
echo "Here's the new first parameter: $1"

- 3

$ Jtestldsh 12345
* The original parameters: 1 2 3 4 5 Here's the new first parameter: 3

- $

By using values in the shift command, you can easily skip over parameters you

don’t need.
Working with Options

* Options are single letters preceded by a dash that alter the behavior of a
command. This section shows three methods for working with options in your

shell scripts.
* Finding your options

* On the surface, there’s nothing all that special about command line options. They
appear on the command line immediately after the script name, just the same

as command line parameters.

* In fact, if you want, you can process command line options the same way you

process command line parameters.
Processing simple options

* Inthe test13.sh script earlier, you saw how to use the shift command to work

your way down the command line parameters provided with the script program.

* You can use this same technique to process command line options.

- Periyar University — CDOE| Self-Learning Material

+ $cat testls.sh

+ #l/bin/bash

* # extracting command line options as parameters #
+ echo

* while [-n"$1"] do

+ case "$1"in

* -a) echo "Found the -a option" ;;

* -b) echo "Found the -b option" ;;

* -c) echo "Found the -c option" ;;

* *)echo "$1 is not an option" ;; esac

+ shift done

c $

+ $./testl5.sh-a-b-c -d

* Found the -a option Found the -b option Found the -c option -d is not an option
c $

* The case statement checks each parameter for valid options. When one is found,
the appropriate commands are run in the case statement.

* This method works, no matter in what order the options are presented on the

command line:
$./testl5.sh -d -c —a
-d is not an option
Found the -c option
Found the -a option

» Separating options from parametersThe standard way to do this in Linux is to
separate the two with a special character code that tells the script when the options

are finished and when the normal parameters start.

- Periyar University — CDOE| Self-Learning Material

» For Linux, this special character is the double dash (--). The shell uses the double
dash to indicate the end of the option list. After seeing the double dash, your script
can safely process the remaining command line parameters as parameters and not

options.

* To check for the double dash, simply add another entry in the case

statement:
 $cattestl6.sh
+ #l/bin/bash
* # extracting options and parameters echo
* while[-n"$1"]do
« case "$1"in
+ -a) echo "Found the -a option" ;;
* -b) echo "Found the -b option™;;
* -c) echo "Found the -c option" ;;

--) shift

* break;;

* *)echo "$1 is not an option";; esac

» shift done
- #
* count=1

« for param in $@ do
+ echo "Parameter #$count: $param" count=$[$count + 1]
* done

+ $

* This script uses the break command to break out of the while loop when it

encounters the double dash. Because we’re breaking out prematurely, we need to

- Periyar University — CDOE| Self-Learning Material

ensure that we stick in another shift command to get the double dash out of the

parameter variables.
* $./testl6.sh -c -a -b testl test2 test3

* Found the -c option Found the -a option Found the -b option testl is

not an option
* test2 is not an option test3 is not an option
c $
Processing options with values

* $cattestl7.sh
« #l/bin/bash
* # extracting command line options and values echo
* while[-n"$1"]do
« case "$1"in
* -a) echo "Found the -a option™;;
e -b) param="$2"
» echo "Found the -b option, with parameter value $param" shift ;;

* -c) echo "Found the -c option™;;

. -) shift

* break;;

« *)echo "$1 is not an option";; esac shift done
s #

¢ count=1

« for param in "$@" do
* echo "Parameter #$count: $param" count=$[$count + 1]

* done

- Periyar University — CDOE| Self-Learning Material

- $

$./testl7.sh -a -b testl -d

Found the -a option

Found the -b option, with parameter value testl
» -dis not an option

- $

¢ In this example, the case statement defines three options that it processes.

e The -b option also requires an additional parameter value. Because the parameter
being processed is $1, you know that the additional parameter value is located in $2

(because all the parameters are shifted after they are processed).
e Just extract the parameter value from the $2 variable.

e Of course, because we used two parameter spots for this option, you also need to set

the shift command to shift one additional position.
Using the getopt command

* The getopt command is a great tool to have handy when processing command line
options and parameters. It reorganizes the command line parameters to make

parsing them in your script easier.

Looking at the command format

* The getopt command can take a list of command line options and parameters, in
any form, and automatically turn them into the proper format. It uses the following

command format:

getopt optstring parameters

* Here’s a simple example of how getopt works:

- Periyar University — CDOE| Self-Learning Material

* $ getopt ab:cd -a -b testl -cd test2 test3

* -a-btestl -c -d -- test2 test3

- $

* The optstring defines four valid option letters, a, b, ¢, and d.

* Acolon () is placed behind the letter b in order to require option b to have a

parameter value.

* When the getopt command runs, it examines the provided parameter list (-a -b

testl -cd test2 test3) and parses it based on the supplied optstring.

* Notice that it automatically separated the -cd options into two separate options and

inserted the double dash to separate the additional parameters on the line.
Using getopt in your scripts

* One of the set command options is the double dash (--). The double dash instructs
set to replace the command line parameter variables with the values on the set

command’s command line.

* The trick then is to feed the original script command line parameters to the getopt
command and then feed the output of the getopt command to the set command to
replace the original command line parameters with the nicely formatted ones from

getopt.
* This looks something like this:
« set -- $(getopt -q ab:cd "$@")

* Now the values of the original command line parameter variables are replaced with
the output from the getopt command, which formats the command line parameters

for us.

* This command converts command line options and parameters into a standard

format that you can process in your script.

* The getopt command allows you to specify which letters it recognizes as options

and which options require an additional parameter value.

* he getopt command processes the standard command line parameters and
outputs the options and parameters in the proper order.

- Periyar University — CDOE| Self-Learning Material

getopts command

* The final method for handling command line options is via the getopts command

(note that it’s plural).

* The getopts command provides more advanced processing of the command line

parameters.

* It allows for multi-value parameters, along with identifying options not defined by
the script.

Standardizing Options

* When you create your shell script, obviously you're in control of what happens. It's
completely up to you as to which letter options you select to use and how you select
to use them.

* However, a few letter options have achieved a somewhat standard meaning in the
Linux world. If you control these options in your shell script, your scripts will be more
user-friendly.

Common Linux Command Line Options

Option Description

-a Shows all objects

-C Produces a count

-d Specifies a directory

-e Expands an object

-f Specifies a file to read data from

-h Displays a help message for the command

-i Ignores text case

-l Produces a long format version of the output

- Periyar University — CDOE| Self-Learning Material

Option Description

-n Uses a non-interactive (batch) mode

-0 Specifies an output file to redirect all output to
-q Runs in quiet mode

-r Processes directories and files recursively

-S Runs in silent mode

-v Produces verbose output

-X Excludes an object

-y Answers yes to all questions

Getting User Input

» Although providing command line options and parameters is a great way to get data

from your script users, sometimes your script needs to be more interactive.

+ Sometimes you need to ask a question while the script is running and wait for a

response from the person running your script.
* The bash shell provides the read command just for this purpose.

* An interactive method to obtain data from your script users is the read command.
The read command allows your scripts to query users for information and wait. The
read command places any data entered by the script user into one or more variables,

which you can use within the script.

+ Several options are available for the read command that allow you to customize the
data input into your script, such as using hidden data entry, applying timed data
entry, and requesting a specific number of input characters.

Reading basics

* The read command accepts input either from standard input (such as from the

keyboard) or from another file descriptor.
« After receiving the input, the read command places the data into a variable.

* Here’s the read command at its simplest:

- Periyar University — CDOE| Self-Learning Material

$ cat test21.sh

#!/bin/bash

testing the read command

echo -n "Enter your name: " read name

echo "Hello $name, welcome to my program. “
$

* In fact, the read command includes the -p option, which allows you to specify a
prompt directly in the read command line:

+ $cattest22.sh

+ #l/bin/bash

+ #testing the read -p option #

* read -p "Please enter your age: " age

+ days=$[$age * 365]

echo "That makes you over $days days old! “
$./test21.sh

Enter your name: Rich Blum

Hello Rich Blum, welcome to my program.

$

$./test22.sh

* Please enter your age: 10

* That makes you over 3650 days old!
+ $

* Timing out

* Be careful when using the read command. Your script may get stuck waiting for the
script user to enter data.

» If the script must go on regardless of whether any data was entered, you can use
the -t option to specify a timer.

- Periyar University — CDOE| Self-Learning Material

* The -t option specifies the number of seconds for the read command to wait for
input.

+ $cattest25.sh

+ #l/bin/bash

+ #timing the data entry #

« ifread -t 5 -p "Please enter your name: " hame
+ then

* echo "Hello $name, welcome to my script"
else

+ echo
* echo "Sorry, too slow! "
o fi
+ $
+ $./test25.sh
* Please enter your name: Rich
* Hello Rich, welcome to my script
c $
+ $./test25.sh
+ Please enter your name:
* Sorry, too slow!
+ $
Reading with no display :
* Sometimes you need input from the script user, but you don’t want that input to

display on the monitor. The classic example is when entering passwords, but there

are plenty of other types of data that you need to hide.

* The -s option prevents the data entered in the read command from being displayed
on the monitor; actually, the data is displayed, but the read command sets the text
color to the same as the background color. Here’s an example of using the -s option

in a script:

- Periyar University — CDOE| Self-Learning Material

+ $cattest27.sh
+ #l/bin/bash
* # hiding input data from the monitor #
* read -s -p "Enter your password: " pass echo
« echo"lIs your password really $pass? "
example
$./test27.
Enter your password:
Is your password really T3stlng?

$

Reading from afile

* Finally, you can also use the read command to read data stored in a file on the

Linux system.
* Each call to the read command reads a single line of text from the file.

* When no more lines are left in the file, the read command exits with a non-zero exit

status.
* The tricky part is getting the data from the file to the read command.

* The most common method is to pipe the result of the cat command of the file

directly to a while command that contains the read command.
« $cat test28.sh
» #l/bin/bash
* #reading data from a file #
+ count=1
« cattest | while read line

« do

- Periyar University — CDOE| Self-Learning Material

» echo "Line $count: $line"
+ count=$[$count + 1]
+ done
» echo "Finished processing the file"
c $
+ $cattest
* The quick brown dog jumps over the lazy fox.
* This is a test, this is only a test.
* O Romeo, Romeo! Wherefore art thou Romeo?
c $
+ $./test28.sh
» Line 1: The quick brown dog jumps over the lazy fox.
* Line 2: This is a test, this is only a test.
* Line 3: O Romeo, Romeo! Wherefore art thou Romeo?
* Finished processing the file
+ $

» The while command loop continues processing lines of the file with the read

command, until the read command exits with a non-zero exit status.
Scripting control

Stopping processes

e System administrator is knowing when and how to stop a process.

e Sometimes, a process gets hung up and needs a gentle push to either get

going again or stop.
e Other times, a process runs away with the CPU and refuses to give it up.

¢ In both cases, you need a command that allows you to control a process. Linux

follows the Unix method of inter process communication.

- Periyar University — CDOE| Self-Learning Material

e In Linux, processes communicate with each other using signals. A process
signal is a predefined message that processes recognize and may choose to

ignore or act on.

e The developers program how a process handles signals. Most well-written
applications have the ability to receive and act on the standard Unix process

signals.

Linux Process Signals

Signal Name Description
1 HUP Hangs up
2 INT Interrupts
3 QUIT Stops running
9 KILL Unconditionally terminates
11 SEGV Produces segment violation
15 TERM Terminates if possible
17 STOP Stops unconditionally, but doesn’t terminate
18 TSTP Stops or pauses, but continues to run in
background
19 CONT Resumes execution after STOP or TSTP

2.3 SCRIPTING CONTROL

P Linux uses signals to communicate with processes running on the system.

» You can control the operation of your shell script by programming the script to

perform certain commands when it receives specific signals.

Signaling the bash shell

» There are more than 30 Linux signals that can be generated by the system and

applications.

» Most common Linux system signals that you'll run across in your shell script writing.

- Periyar University — CDOE| Self-Learning Material

Signal Value Description

1 SIGHUP Hangs up the process

2 SIGINT Interrupts the process

3 SIGQUIT Stop the process

9 SIGKILL Unconditionally terminates the process

15 SIGTERM Terminate the process if possible

17 SIGSTOP Unconditionally stops, but doesn’t terminate,

the process

18 SIGTSTP Stops or pauses the process, but doesn’t
terminate
19 SIGCONT Continue a stopped process

» By default, the bash shell ignores any SIGQUIT (3) and SIGTERM (15) signals it
receives (so an interactive shell cannot be accidentally terminated).

» However, the bash shell does not ignore any SIGHUP (1) and SIGINT (2) signals it

receives.

» If the bash shell receives a SIGHUP signal, such as when you leave an interactive

shell, it exits.

P Before it exits, however, it passes the SIGHUP signal to any processes started by

the shell, including any running shell scripts.
Generating signals

» The bash shell allows you to generate two basic Linux signals using key

combinations on the keyboard.

- Periyar University — CDOE| Self-Learning Material

P This feature comes in handy if you need to stop or pause a runaway script.

Interrupting a process:

» The Ctrl+C key combination generates a SIGINT signal and sends it to any

processes currently running in the shell.

» You can test this by running a command that normally takes a long time to finish

and pressing the Ctrl+C key combination:
$ sleep 100
"C

$

Pausing a process

P Instead of terminating a process, you can pause it in the middle of whatever it's

doing.

» Sometimes, this can be a dangerous thing (for example, if a script has a file lock
open on a crucial system file), but often it allows you to peek inside what a script is

doing without actually terminating the process.

» When you use the Ctrl+Z key combination, the shell informs you that the process

has been stopped:
$ sleep 100
A
[1]+ Stopped sleep 100
$
Trapping signals

» Instead of allowing your script to leave signals ungoverned, you can trap them

when they appear and perform other commands.

» The trap command allows you to specify which Linux signals your shell script can

watch for and intercept from the shell.

- Periyar University — CDOE| Self-Learning Material

P If the script receives a signal listed in the trap command, it prevents it from being

processed by the shell and instead handles it locally.
» The format of the trap command is:
trap commands signals
Trapping a script exit
» Besides trapping signals in your shell script, you can trap them when the shell
script exits.
» This is a convenient way to perform commands just as the shell finishes its job.

» When the script gets to the normal exit point, the trap is triggered, and the shell

executes the command you specify on the trap command line.
» $cattestl.sh
» #l/bin/bash
Testing signal trapping

trap "echo ' Sorry! | have trapped Ctrl-C" SIGINT # echo This is a test
script #

count=1

while [$count -le 10]

do

echo "Loop #$count"

sleep 1

count=$[$count + 1]

done

#echo "This is the end of the test script" #
$./testl.sh

This is a test script Loop #1
Loop #2

Loop #3

- Periyar University — CDOE| Self-Learning Material

Loop #4

Loop #5

AC Sorry! | have trapped Ctrl-C Loop #6
Loop #7

Loop #8

AC Sorry! | have trapped Ctrl-C Loop #9
Loop #10

This is the end of the test script

$

» Each time the Ctrl+C key combination was used, the script executed the echo
statement specified in the trap command instead of not managing the signal and

allowing the shell to stop the script.
Modifying or removing a trap

» To handle traps differently in various sections of your shell script, you simply

reissue the
P trap command with new options:

P After the signal trap is modified, the script manages the signal or signals differently.
However, if a signal is received before the trap is modified, the script processes it

per the original trap command
Running Scripts in Background Mode

» Sometimes, running a shell script directly from the command line interface is

inconvenient.

P Some scripts can take a long time to process, and you may not want to tie up the

command line interface waiting.
» While the script is running, you can’t do anything else in your terminal session.
» Fortunately, there’s a simple solution to that problem.

» Running in the background

- Periyar University — CDOE| Self-Learning Material

» Running a shell script in background mode is a fairly easy thing to do. To run a

shell

P script in background mode from the command line interface, just place an

ampersand
» symbol (&) after the command:

$ cat test4.sh
#!/bin/bash
Test running in the background
count=1
while [$count -le 10]
do
sleep 1
count=$[$count + 1]
done
$./testd.sh &
[1] 3231
$

» When you place the ampersand symbol after a command, it separates the command
from the bash shell and runs it as a separate background process on the system. The
first thing that displays is the line:

» [1] 3231

» The number in the square brackets is the job number assigned by the shell to the back-
ground process. The next number is the Process ID (PID) the Linux system assigns to

the process. Every process running on the Linux system must have a unique PID.

» As soon as the system displays these items, a new command line interface prompt
appears. You are returned to the shell, and the command you executed runs safely in

background mode. At this point, you can enter new commands at the prompt.

» When the background process finishes, it displays a message on the terminal:

- Periyar University — CDOE| Self-Learning Material

» Done ./test4.sh

» This shows the job number and the status of the job (Done), along with the command
used to start the job.

Be aware that while the background process is running, it still uses your
terminal monitor for STDOUT and STDERR messages:

$ cat test5.sh

#!/bin/bash

Test running in the background with output
echo "Start the test script” count=1
while [$count -le 5] do

echo "Loop #$count" sleep 5
count=$[$count + 1] done

#

echo "Test script is complete" #

$

$./test5.sh &

[1] 3275

$ Start the test script Loop #1
Loop #2

Loop #3

Loop #4

Loop #5

Test script is complete

Done ./testb5.sh

$

- Periyar University — CDOE| Self-Learning Material

Running Scripts without a Hang-Up

Sometimes, you may want to start a shell script from a terminal session and let the script
run in background mode until it finishes, even if you exit the terminal session. You can do

this by using the nohup command
16

The nohup command runs another command blocking any SIGHUP signals that are sent

to the process. This prevents the process from exiting when you exit your terminal session.
$ nohup ./testl.sh &
[1] 3856

$ nohup: ignoring input and appending output to ‘'nohup.out'

$

Controlling the Job

e Earlier in this chapter, you saw how to use the Ctrl+C key combination to stop a job
running in the shell.

e After you stop a job, the Linux system lets you either kill or restart it.

e You can kill the process by using the kill command. Restarting a stopped process

requires that you send it a SIGCONT signal.
e The function of starting, stopping, killing, and resuming jobs is called job control.

e With job control, you have full control over how processes run in your shell

environment.

e This section describes the commands used to view and control jobs running in your

shell.
Viewing jobs

The key command for job control is the jobs command. The jobs command allows you to

view the current jobs being handled by the shell:

- Periyar University — CDOE| Self-Learning Material

$ cat test10.sh
#!/bin/bash
Test job control
echo "Script Process ID: $$" #
count=1
while [$count -le 10] do
echo "Loop #$count" sleep 10
count=$[$count + 1] done
#
echo "End of script..." #
$
Output
$./test10.sh
Script Process ID: 1897 Loop #1
Loop #2
A
+ Stopped Jtest10.sh
$

The jobs Command Parameters

Parameter Description

-l Lists the PID of the process along with the job number
-n Lists only jobs that have changed their status,
since the last notification from the shell

-p Lists only the PIDs of the jobs

- Periyar University — CDOE| Self-Learning Material

-r Lists only the running jobs

-S Lists only stopped jobs

Restarting stopped jobs

e Under bash job control, you can restart any stopped job as either a background

process or a foreground process.

e A foreground process takes over control of the terminal you’re working on, so be

careful about using that feature.

$.Jtestll.sh

NZ

+ Stopped Jtestll.sh

$ bg

[1]+ ./testll.sh &

$

$ jobs

[1]+ Running Jtestll.sh &
$

e Because the job was the default job, indicated by the plus sign, only the bg command

was needed to restart it in background mode. Notice that no PID is listed when the job

is moved into background mode.
¢ If you have additional jobs, you need to use the job number along with the bg

command:

$./testll.sh

nZ

+ Stopped Jtestll.sh
$

$./testl2.sh

nZ

+ Stopped Jtestl2.sh
$

$bg2

[2]+ ./testl2.sh &

$

- Periyar University — CDOE| Self-Learning Material

$ jobs
[1]+ Stopped Jtestll.sh
[2]- Running Jtestl2.sh &

> $

e The command bg 2 was used to send the second job into background mode.
Notice that when the jobs command was used, it listed both jobs with their status,

even though the default job is not currently in background mode.

To restart a job in foreground mode, use the fg command, along with the job number:

» $fg2

» /testl2.sh

P This is the script's end...

> $

P Because the job is running in foreground mode, the command line interface

prompt does not appear until the job finishes.

Being Nice

e In a multitasking operating system (which Linux is), the kernel is responsible for
assigning CPU time for each process running on the system.

e The scheduling priority is the amount of CPU time the kernel assigns to the
process relative to the other processes.

e By default, all processes started from the shell have the same scheduling
priority on the Linux system.

e Sometimes, you want to change the priority of a shell script, either lowering its
priority so it doesn’t take as much processing power away from other processes
or giving it a higher priority so it gets more processing time.

e You can do this by using the nice command.
Using the nice command

e The nice command allows you to set the scheduling priority of a command as you
start it.

- Periyar University — CDOE| Self-Learning Material

e To make a command run with less priority, just use the -n command line option for

nice to specify a new priority level:

$ nice -n 10 ./test4.sh > test4.out &
[1] 4973

$

$ ps -p 4973 -o pid,ppid,ni,cmd
PID PPID NICMD

4973 4721 10 /bin/bash ./test4.sh

> 3
» Sometimes, you'd like to change the priority of a command that’s already
running on the system. That's what the renice command is for. It allows you to
specify the PID of a running process to change its priority:
» $./testll.sh &

[1] 5055

$

$ ps -p 5055 -o pid,ppid,ni,cmd
PID PPID NICMD

5055 4721 0 /bin/bash ./testll.sh
$

$ renice -n 10 -p 5055

5055: old priority 0, new priority 10
$

$ ps -p 5055 -o pid,ppid,ni,cmd
PID PPID NICMD

5055 4721 10 /bin/bash ./testll.sh
$

e The renice command automatically updates the scheduling priority of the running
process.

e As with the nice command, the renice command has some limitations:

e You can only renice processes that you own.

e You can only renice your processes to a lower priority.

e The root user can renice any process to any priority.

- Periyar University — CDOE| Self-Learning Material

If you want to fully control running processes, you must be logged in as the root
account or use the sudo command.

Sudo (superuser do) is a utility for UNIX- and Linux-based systems that provides an
efficient way to give specific users permission to use specific system commands at the
root (most powerful) level of the system. Sudo also logs all commands and arguments.

Scheduling a job using the at command

The at command allows you to specify a time when the Linux system will run a
script.

The at command submits a job to a queue with directions on when the shell
should run the job. The at daemon, atd, runs in the background and checks the
job queue for jobs to run.

Most Linux distributions start this daemon automatically at boot time.
Understanding the at command format

The basic at command format is pretty simple:

at [-f filename] time

By default, the at command submits input from STDIN to the queue. You can
specify a file- name used to read commands (your script file) using the -f
parameter.

The time parameter specifies when you want the Linux system to run the job. If
you specify a time that has already passed, the at command runs the job at that
time on the next day.

You can get pretty creative with how you specify the time. The at command
recognizes lots of different time formats:

A standard hour and minute, such as 10:15

An AM/PM indicator, such as 10:15PM

A specific named time, such as now, noon, midnight, or teatime (4PM)
Retrieving job output

When the job runs on the Linux system, there’s no monitor associated with the
job.

Instead, the Linux system uses the e-mail address of the user who submitted
the job as STDOUT and STDERR.

Any output destined to STDOUT or STDERR is mailed to the user via the mail

system.

- Periyar University — CDOE| Self-Learning Material

Scheduling regular scripts

» Using the at command to schedule a script to run at a preset time is great, but
what if you need that script to run at the same time every day or once a week or
once a month?

» Instead of having to continually submit at jobs, you can use another feature of

the Linux system.
Starting scripts with a new shell

e The ability to run a script every time a user starts a new bash shell (even just when
a specific user starts a bash shell) can come in handy. Sometimes, you want to set

shell features for a shell session or just ensure that a specific file has been set.

¢ Recall the startup files run when a user logs into the bash shell (covered) Also,

remember that not every distribution has all the startup files.

e Essentially, the first file found in the following ordered list is run and the rest are

ignored:
$HOME/.bash_profile
$HOME/.bash_login

$HOME/.profile

Unit Summary

The Linux system allows you to control your shell scripts by using signals. The
bash shell accepts signals and passes them on to any process running under the
shell process. Linux sig- nals allow you to easily kill a runaway process or

temporarily pause a long-running process.

You can use the trap statement in your scripts to catch signals and perform
commands. This feature provides a simple way to control whether a user can

interrupt your script while it's running.

By default, when you run a script in a terminal session shell, the interactive shell
is suspended until the script completes. You can cause a script or command to
run in background mode by adding an ampersand sign (&) after the command

name. When you run a script

- Periyar University — CDOE| Self-Learning Material

or command in background mode, the interactive shell returns, allowing you to
continue entering more commands. Any background processes run using this
method are still tied tothe terminal session. If you exit the terminal session, the
background processes also exit.

To prevent this from happening, use the nohup command. This command intercepts
any signals intended for the command that would stop it — for example, when
you exit the terminal session. This allows scripts to continue running in
background mode even if you exit the terminal session. When you move a
process to background mode, you can still control what happens to it. The jobs
command allows you to view processes started from the shell session. After you
know the job ID of a background process, you can use the kill command to send
Linux signalsto the process or use the fg command to bring the process back to the
foreground in the shell session. You can suspend a running foreground process
by using the Ctrl+Z key combination and place it back in background mode, using

the bgcommand.

Let us sum up

Structured commands refer to a set of commands that are organized in a systematic
and logical manner. These commands are often used in command-line interfaces (CLIS)

and scripts to perform tasks or automate processes.

Script control involves writing and managing scripts to automate tasks and control
system behavior. Scripts can be written in various scripting languages, such as Bash,

PowerShell, Python, and others.

Check your progress
1. Which syntax is correct for a basic for loop in bash?**
A) foriin list; do ... done B) for (i=0; i<list; i++); do ... done

C)fori:list; { ... } D) foreach i (list); do ... done

2. What is the key difference between until and while loops in bash?**

A) until loops execute until a condition is true, while loops execute while a condition is true.

- Periyar University — CDOE| Self-Learning Material

B) until loops are used for infinite loops, while loops are not.

C) until loops do not support conditions, while loops do.

D) until loops can only be used with integers, while loops can be used with any data type.

3. Which of the following is the correct syntax for a while loop in bash?**
A) while (condition); do ... done B) while [condition |; do ... done

C) while condition; do ... done D) while { condition }; do ... done

4. Which command can be used to exit from the inner loop of nested loops in bash?*

A) exit B) break C) continue D) return

5. How do you redirect the output of a loop to a file in bash?*
A) foriin list; do ... done > output.txt B) for i in list; do > output.txt ... done

C) for iin list; > output.txt do ... done D) for i in list; do ... > output.txt done

6. How do you access the first parameter passed to a bash script?*

A) $0 B) $1 C) $2 D) $#

7. Which variable holds the total number of parameters passed to a bash script?*

A) $# B) $0 C) $* D) $@

8. What does the shift command do in a bash script?**
A) Shifts the command-line arguments to the left.

B) Shifts the command-line arguments to the right.

C) Clears all command-line arguments.

D) Resets the script's parameters.

- Periyar University — CDOE| Self-Learning Material

9. Which command is typically used to parse command-line options in a bash script?*

A) getopts B) getopt C) parseopts D) optparse

10. What is the typical format for specifying options in a bash script?*

A) -option B) /option C) --option D) option=

11. Which command is used to get user input in a bash script?*

A) read B) input C) get D) scan

12. Which command is used to trap signals in a bash script?*

A) trap B) catch C) signal D) handle

13. Which symbol is used to run a script in the background?*

A) & B) && C) | D) |

14. Which command prevents a script from being terminated by a hang-up signal?*

A) nohup B) nohangup C) nohup -i D) prevent-hangup

15. Which command is used to bring a background job to the foreground?*

A) fg B) bg C) jobs D) kill

16. Which command is used to start a script with a lower priority?*

A) low B) renice C) nice D) setpriority

17. Which command is used to schedule scripts to run at specific times?*

A) schedule B) at C) crontab D) timer

- Periyar University — CDOE| Self-Learning Material

Here are the answers:
1.A) 2.A) 3.B) 4.B) 5A 6.B) 7.A) 8A 9.A

11.A) 12.A) 13.A) 14.A) 15.A) 16.C) 17.C)

Self Assessment Questions :

Compare C-Style command and multiple test command.
Handling user input in linux example.

How to use job command in linux.

Differentiate between break and continue with example program.
Explain about looping statements with examples.

How to get user input with multiple options.

Explain script control commands with example.

© N o o bk~ W hPE

How to handling user input? Explain in detail.

Open source e-content links

10. C)

https://www.slideshare.net/slideshow/linux-commands-and-file-

structure/72805453
https://linuxconfig.org/handling-user-input-in-bash-scripts
https://youtu.be/42iQKuQodW47?si=ioDEWCcbiRVFQ-HfY

Glossary

Is: Lists the contents of a directory.

Usage: Is [options] [directory]

Options: -l (long format), -a (include hidden files), -h (human-readable sizes).

cd: Changes the current directory.

Usage: cd [directory]
pwd: Prints the current working directory.

- Periyar University — CDOE| Self-Learning Material

Usage: pwd

mkdir: Creates a new directory.

Usage: mkdir [directory]

rmdir: Removes an empty directory.

Usage: rmdir [directory]

rm: Removes files or directories.

Usage: rm [options] [file/directory]
Options: -r (recursive), -f (force).

cp: Copies files or directories.

Usage: cp [options] [source] [destination]
Options: -r (recursive), -i (interactive).

mv: Moves or renames files or directories.

Usage: mv [source] [destination]

touch: Creates an empty file or updates the timestamp of an existing file.

Usage: touch [file]

tar: Archives files.

Usage: tar [options] [archive] [files]
Options: -c (create), -x (extract), -t (list), -z (gzip compression).

echo: Displays a line of text or the value of a variable.

Usage: echo [text]

read: Reads a line of input from the user.

Books

1.Learning the bash Shell: Unix Shell Programming by Cameron Newham and Bill

Rosenblatt

- Periyar University — CDOE| Self-Learning Material

2.Bash Cookbook: Solutions and Examples for Bash Users" by Carl Albing, JP

Vossen, and Cameron Newham

- Periyar University — CDOE| Self-Learning Material

UNIT =1l

Objectives:

o To write modular and reusable code by defining functions that encapsulate specific
tasks or operations.

« To create scripts that interact with or automate tasks in graphical desktop
environments, enhancing user productivity and system management.

e To use sed and awk for powerful text processing, allowing for advanced
manipulation and extraction of data from text files and streams.

3.1 Creating Functions

A function is a collection of statements that execute a specified task. Its main goal
is to break down a complicated procedure into simpler subroutines that can subsequently
be used to accomplish the more complex routine. For the following reasons, functions are
popular.

e Assist with code reuse.
« Enhance the program’s readability.
e Modularize the software.

o Allow for easy maintenance.

Types of Functions

The functions in shell scripting can be boxed into a number of categories. The

following are some of them:

1. The functions that return a value to the caller. The return keyword is used by the functions

for this purpose.
%+ Function used to calculate the average of the given numbers.
Example

find_avg(){
len=$#
sum=0

for x in "$@"

- Periyar University — CDOE| Self-Learning Material

do

sum=$((sum + x))
done
avg=$((sum/len))
return $avg

}

find_avg 30 40 50 60
printf "%f" "$?"

printf "\n"

Output

(base) 5 S bash file.sh
45.000000

(base) g S |:|

#+ The functions that terminate the shell using the exit keyword.
Example

is_odd(){

x=$1

if [$((x%2)) == 0]; then
echo "Invalid Input”
exit 1

else

echo "Number is Odd"
fi

}

is_odd 64

Output

(base) g S bash file.sh
Invalid Input

(base) 7 S |:|

% The functions that alter the value of a variable or variables.

- Periyar University — CDOE| Selt-Learning Material

Example

a=1
increment(){
a=$((a+1))
return

}

increment

echo "$a"

Output

S bash file.sh

s[

+ The functions that echo output to the standard output.
Example

hello_world(){
echo "Hello World"

return

}

hello_world
Output

(base) 7 S bash file.sh
Hello World

(base) B S I

- Periyar University — CDOE| Self-Learning Material

Returning a value
Example: Bash function returns multiple values, passed via command substitution,
with a READ command and Here string in calling script
#!/usr/bin/env bash
set -e #Stop on any errors
function inside_function() {
yvariable1="8"
yvariable2="64"
echo $yvariablel $yvariable2
}
read -r ansl ans2 <<< $(inside_function)
echo "ansl = $ansl1"
echo "ans2 = $ans2"

OUTPUT
ansl1 =8
ans2 = 64

Using variables in functions
A shell variable is a character string in a shell that stores some value. It could be an

integer, filename, string, or some shell command itself.
Rules for variable definition
A variable name could contain any alphabet (a-z, A-Z), any digits (0-9), and an underscore
(_)

e Valid Variable Names
ABC
_AV_3
AV232

e Invalid variable names
2_AN
IABD
$ABC
&QAID

- Periyar University — CDOE| Self-Learning Material

There are three main types of variables:

1) Local Variable

Variables which are specific to the current instance of shell. They are basically used
within the shell, but not available for the program or other shells that are started from within

the current shell.

For example
‘name=Jayesh’

In this case the local variable is (name) with the value of Jayesh. Local variables is

2) Environment Variable

These variables are commonly used to configure the behavior script and programs
that are run by shell. Environment variables are only created once, after which they can be
used by any user.

For example
“export PATH=/usr/local/bin:$PATH" would add “/usr/local/bin” to the beginning of the

shell’s search path for executable programs.

3) Shell Variables

Variables that are set by shell itself and help shell to work with functions correctly. It

contains both, which means it has both, some variables are Environment variable, and
some are Local Variables.

For example

"$PWD" = Stores working directory

"$HOME" = Stores user’'s home directory

"$SHELL" = Stores the path to the shell program that is being used.

Array and variable functions
Each value in an array is indexed starting from index O for the first value. It is almost
similar to Shell Script but with a slight difference. The difference between an array and a

Shell Script array is that it supports values of all data types.

- Periyar University — CDOE| Self-Learning Material

Two types of arrays in the shell script.

% Associative Arrays: It contains Elements with key-value pairs.

+ Indexed Arrays: It contains Indexed Elements starting with zero.

+ Variable Assignment: To assign a value to a variable, you can use the equals sign
(=).
my_variable="Hello, World!"

#+ Variable Access: To access the value of a variable, you prefix it with a dollar sign
($).

echo $my_variable

#+ Array Declaration: We can declare an array by using parentheses and storing
values inside it.

my_array=("apple" "banana" "cherry")

+ Access Array Elements: To access individual elements of an array, use the index
inside square brackets.
echo ${my_array[O]} # Prints "apple"
+ Array Length: To get the number of elements in an array, use the # symbol.
length=${#my_array[@]}
echo "Array length: $length"
+ Loop through an Array: We can use a for loop to iterate through the elements of
an array.
for item in "${my_array[@1]}"; do
echo $item
done
#+ Adding Elements to an Array: We can add elements to an array using the +=
operator.
my_array+=("grape")
#+ Removing Elements from an Array: Use the unset command to remove an
element from an array.
unset my_array[1] # Removes the second element (banana)
#+ Check if a Variable is Set: Use the -v flag with if statements to check if a variable
is set.
if [-v my_variable]; then

echo "my_variable is set"

- Periyar University — CDOE| Self-Learning Material

fi
#+ Conditional Statements: We can use conditional statements like if, elif, and else to
make decisions based on variable values.
if [$my_variable == "Hello"]; then
echo "The variable is 'Hello™
elif [$my_variable == "World"]; then
echo "The variable is 'World™
else
echo "The variable is something else"
fi
Recursive functions
A recursive function is a function that calls itself from inside itself. This function is

very useful when you need to call the function to do something again from inside of it.

To calculate the factorial of 4, you multiply the number by the descending numbers.
You can do it like this: The ! sign means factorial.
41 = 4*3%2*1
Example
#!/bash/bin
factorial()
{
let n=%$1
if ("$n" <="1"))
then return 1
else
factorial n-1
return $n*$?
fi
return O
}
factorial 5

echo "factorial 5 = $?"

- Periyar University — CDOE| Self-Learning Material

Creating a library

Shell Function Library is basically a collection of functions that can be accessed
from anywhere in the development environment. It actually makes shell scripting a bit less
tedious and repetitive. By creating a shell script with some functions defined in it, we can
then access and call those functions from other files or scripts. It helps in avoiding repeating

the code in large files and complex scripts.

Creating function library:

#!/bin/bash

function square(){
vl=$1
n=3(($v1*$v1))
echo $n

}

function expo(X{
vl=$1
v2=%$2
n=$(($v1**$v2))
echo $n

}

function factorial(){
vl=$1
n=1
while [[$v1 -gt 0 J]; do
n=$(($n*$v1))
v1=$(($v1 - 1))

done

echo $n

Using Functions From Library:

We need a place or file where we can use or utilize this function library. So we

create a shell script to call these functions and use it to avoid repetitive tasks and code.

- Periyar University — CDOE| Self-Learning Material

Example

#!/bin/bash

echo "476 = "$(expo 4 6)
a=5

echo "$a! = "$(factorial $a)
b=18

echo "$b"2 = "$(square $b)

Using functions on the command line
+ Defining a Function: We can define a function using the function keyword or simply

by using parentheses.

Here's an example using both methods
Using the "function" keyword
my_function() {
echo "Hello from my_function”
}
Using parentheses
another_function() {
echo "Hello from another_function”
}
+ Calling a Function: We can call a function by its name, followed by parentheses.
Example
my_function

another_function

#+ Passing Arguments to Functions: We can pass arguments to functions by

referencing them with $1, $2, and so on, inside the function.

- Periyar University — CDOE| Self-Learning Material

Example

greet() {
echo "Hello, $1!"

}
greet "Alice" # Call the function with an argument
#+ Returning Values from Functions: We can use the return statement to return a
value from a function.
+ them with $1, $2, and so on, inside the function.
Example
add() {
result=$(($1 + $2))
return $result

}
add 3 4 # Call the function to add two numbers
sum=$? # Get the return value

echo "Sum is $sum"

Using Functions on the Command Line:

We can use functions on the command line by defining them in your shell script and then

sourcing the script to make the functions available in your current shell session.

For example, if you have a script named my_functions.sh with the functions.
#!/bin/bash

greet() {
echo "Hello, $1!"

}

3.2 Writing Scripts for Graphical Desktops
1. Desktop Environment:
« Different desktop environments may have their own scripting languages or tools. For
example:
e GNOME: You can use GNOME Shell extensions with JavaScript or use the
gsettings command to configure settings.
« KDE Plasma: Plasma desktop uses QtScript, Python, and D-Bus for
scripting.
o Xfce: Xfce supports scripting with Xfce4-panel plugins, including Python.

- Periyar University — CDOE| Self-Learning Material

« Unity: You can use Unity's API with Python or other scripting languages.
2. Bash Script with GUI Libraries:
o We can use Bash scripts in conjunction with GUI libraries like Zenity or Yad to create
simple GUI dialogs or windows. These libraries allow you to display information, get

user input, and provide a basic GUI for your script.

3. Keyboard Shortcuts and Commands:
« We can create shell scripts to automate tasks by assigning keyboard shortcuts to
execute them. This can be done through the desktop environment's keyboard

shortcut settings.

4. Automating GUI Applications:
« We can use tools like xdotool to automate interactions with GUI applications. For
example, we can use xdotool to simulate mouse clicks, keyboard input, and window

management.

5. Desktop Configuration:
e We can use shell scripts to manage desktop configurations, change wallpapers, set

themes, and modify desktop-specific settings.

6. Creating Custom Desktop Widgets or Applets:
e Some desktop environments allow you to create custom widgets or applets that can

be developed using specific scripting languages or libraries.

Creating text menus

The select command to create a simple menu in the terminal. Then, the command
displays a list of options preceded by numbers. Select repeatedly reads a number from
standard input. Subsequently, if the number corresponds to a string's position in WORDS,

the command sets NAME to the respective text.

Steps included:
1. Create a custom menu using echo statement and show the menu
2. Create an infinite loop using while statement that accept the user input option and

generate the output continuously until the user input matches the exit pattern.

- Periyar University — CDOE| Self-Learning Material

Take input from the user using read statement and store it in a variable.
Use case statement to check if the input matches with the pattern.

Create custom pattern.

S

Exit the case statement using esac keyword.

Example
#!/bin/bash
creating a menu with the following options
echo "SELECT YOUR FAVORITE FRUIT",
echo "1. Apple"
echo "2. Grapes"
echo "3. Mango"
echo "4. Exit from menu "
echo -n "Enter your menu choice [1-4]: "
Running a forever loop using while statement
This loop will run until select the exit option.
User will be asked to select option again and again
while :
do
reading choice
read choice
case statement is used to compare one value with the multiple cases.
case $choice in
Pattern 1
1) echo "You have selected the option 1"
echo "Selected Fruit is Apple. ";;
Pattern 2
2) echo "You have selected the option 2"
echo "Selected Fruit is Grapes. ";;
Pattern 3
3) echo "You have selected the option 3"
echo "Selected Fruit is Mango. ";;
Pattern 4
4) echo "Quitting ..."

exit;;

- Periyar University — CDOE| Self-Learning Material

Default Pattern

*) echo "invalid option";;

esac

echo -n "Enter your menu choice [1-4]: "
done

Output
YOUR FAVORITE FRUIT

4. Exit from menu
Enter yc '

Y Ou

Building text window widgets

Install ‘dialog’ if it's not already installed

On Debian/Ubuntu

sudo apt-get install dialog

On Red Hat-based systems:

sudo yum install dialog
Example of a shell script that creates a text window widget using ‘dialog’
#!/bin/bash
Function to display a text window
show_text_window() {
local text_file="$1"
dialog --textbox "$text_file" 20 60

}
Main script

- Periyar University — CDOE| Self-Learning Material

text_file="example.txt"

echo "This is the content of the text window." > "$text_file"
show_text window "$text_file"

Clean up the temporary text file

rm -f "$text_file"

Adding X Window graphics

Install X Window System: Most Linux distributions come with X11 pre-installed.
However, if it's not installed, you can typically install it using your distribution's package
manager. For example, on Debian-based systems like Ubuntu,
Code: sudo apt-get install xorg

Start X Server: Once X11 is installed, you can start the X server by running the
following command.
Code: startx

This command will start the X server and bring up a minimal graphical environment

with a terminal window.

Run Graphical Applications: You can run graphical applications from the terminal
or a launcher. For example, you can run the file manager, text editor, or any other GUI
application. Simply type the name of the application and press Enter. For instance:

Code:
nautilus # To open the file manager (GNOME)
gedit # To open the text editor (GNOME)

Customize the Desktop Environment: Most Linux distributions offer various
desktop environments like GNOME, KDE, Xfce, etc. You can choose a desktop
environment that suits your preferences and install it. For example, to install the GNOME
desktop environment, you can use:

Code:

sudo apt-get install gnome

Window Management: The X Window System provides various window

management functions, such as moving, resizing, and closing windows. You can also

- Periyar University — CDOE| Self-Learning Material

switch between different virtual desktops, manage workspaces, and more. The exact steps
and keybindings for window management depend on the desktop environment you're

using.

X Display Server Configuration: You can configure the X server using the Xorg
configuration files. These files are usually located in the /etc/X11/ directory. You may need
to customize these files to set display resolutions, input devices, or other hardware-specific

settings.

3.3 Introducing sed and gawk
Both ‘awk’ and ‘sed’ rely heavily on regular expressions to describe patterns in text

upon which some operation should be performed.

‘sed’ is a stream editor that allows you to perform basic text transformations on an
input stream (a file or input from a pipeline). It's often used for tasks like search and replace,

text substitution, and basic text manipulation.

Search and Replace: You can use ‘s’ (substitute) command to search for a pattern
and replace it with another.
Code
Replace "old" with "new" in a file.txt

sed 's/old/new/" file.txt

Delete Lines: You can use ‘d’ command to delete lines that match a pattern.
Code
Delete lines containing "pattern” from file.txt
sed '/pattern/d’ file.txt
Print Specific Lines You can use line addresses to specify which lines to apply a
command to.
Code
Print lines 5 to 10 from file.txt
sed -n '5,10p’ file.txt

- Periyar University — CDOE| Self-Learning Material

Multiple Commands You can apply multiple ‘sed’ commands together by
separating them with semicolons.
Code
Replace "old" with "new" and delete lines containing "pattern”

sed -e 's/old/new/" -e ‘/pattern/d’ file.txt

‘gawk’ (GNU Awk): ‘gawk’ is an enhanced version of the classic ‘awk’ utility. It's a
text processing tool that allows you to process structured text data, typically in the form of
records and fields. ‘gawk’ is particularly powerful for data extraction, manipulation, and

reporting.

Basic ‘gawk’ Usage: To use ‘gawk’ you typically specify a pattern-action pair.
Code
Print the first field of each line

gawk { print $1 }' file.txt

Field Separators: By default, ‘gawk’ uses space as the field separator. You can change
the field separator using the ‘—F’ option

Code

Use ":" as the field separator

gawk -F "' { print $1, $3 }' file.txt

Built-in Variables: ‘gawk’ provides many built-in variables, like ‘NF’ (number of fields) and
‘NR’ (record number).

Code

Print the line number and the number of fields

gawk '{ print NR, NF }' file.txt

Regular Expressions: We can use regular expressions in ‘gawk’ for pattern matching and
more complex text processing tasks.

Code

Print lines containing "pattern” anywhere in the text

gawk '/pattern/ { print }' file.txt

- Periyar University — CDOE| Self-Learning Material

Custom Functions: We can define custom functions in ‘gawk’ to perform complex
operations on data.
Code
Define a function and use it to process data
gawk '
function square(x) {
return x * x

}
{ print square($1) } file.txt

Learning about the sed Editor

SED command in UNIX stands for stream editor and it can perform lots of functions
on file like searching, find and replace, insertion or deletion. Though most common use of
SED command in UNIX is for substitution or for find and replace. By using SED you can
edit files even without opening them, which is much quicker way to find and replace

something in file, than first opening that file in VI Editor and then changing it.

e SED is a powerful text stream editor. Can do insertion, deletion, search and
replace(substitution).
e SED command in unix supports regular expression which allows it perform complex
pattern matching.
Syntax:
sed OPTIONS... [SCRIPT] [INPUTFILE...]

#+ Replacing or substituting string: Sed command is mostly used to replace the
text in a file. The below simple sed command replaces the word “unix” with “linux”
in the file.

Syntax:

$sed 's/unix/linux/' geekfile.txt

Output

linux is great 0s. unix is opensource. unix is free os.
learn operating system.

linux linux which one you choose.

linux is easy to learn.unix is a multiuser os.Learn unix .unix is a powerful.

- Periyar University — CDOE| Self-Learning Material

e Here the “s” specifies the substitution operation. The “/” are delimiters. The “unix” is
the search pattern and the “linux” is the replacement string.
e By default, the sed command replaces the first occurrence of the pattern in each

line and it won’t replace the second, third...occurrence in the line.

#+ Replacing the nth occurrence of a pattern in a line : Use the /1, /2 etc flags to
replace the first, second occurrence of a pattern in a line. The below command
replaces the second occurrence of the word “unix” with “linux” in a line.

Syntax:

$sed 's/unix/linux/2' geekfile.txt

Output

unix is great os. linux is opensource. unix is free os.

learn operating system.

unix linux which one you choose.

unix is easy to learn.linux is a multiuser os.Learn unix .unix is a
powerful.

#+ Replacing all the occurrence of the pattern in aline: The substitute flag /g (global
replacement) specifies the sed command to replace all the occurrences of the string
in the line.

Syntax:

$sed 's/unix/linux/g' windowfile.txt

Output

linux is great os. linux is opensource. linux is free os.

learn operating system.

linux linux which one you choose.

linux is easy to learn.linux is a multiuser os.Learn linux .linux is a
powerful.

#+ Replacing from nth occurrence to all occurrences in a line: Use the combination
of /1, /2 etc and /g to replace all the patterns from the nth occurrence of a pattern in
a line. The following sed command replaces the third, fourth, fifth... “unix” word with
“linux” word in a line.

Syntax:
$sed 's/unix/linux/3g' windowfile.txt
Output

unix is great o0s. unix is opensource. linux is free o0s.

- Periyar University — CDOE| Self-Learning Material

learn operating system.
unix linux which one you choose.
unix is easy to learn.unix is a multiuser os.Learn linux .linux is a powerful.
+ Parenthesize first character of each word: This sed example prints the first
character of every word in parenthesis.
Syntax:
$ echo "Welcome To The Geek Stuff" | sed 's\(\b[A-Z]\)A(\1\)/g'
Output
(W)elcome (T)o (T)he (G)eek (S)tuff
#+ Replacing string on a specific line number: You can restrict the sed command to
replace the string on a specific line number.
Syntax:
$sed '3 s/unix/linux/' geekfile.txt
Output
unix is great 0s. unix is opensource. unix is free os.
learn operating system.
linux linux which one you choose.
unix is easy to learn.unix is a multiuser os.Learn unix .unix is a
powerful.
» The above sed command replaces the string only on the third line.

#+ Duplicating the replaced line with /p flag: The /p print flag prints the replaced line
twice on the terminal. If a line does not have the search pattern and is not replaced,
then the /p prints that line only once.

Syntax:

$sed 's/unix/linux/p' geekfile.txt

Output

linux is great 0s. unix is opensource. unix is free os.

linux is great 0s. unix is opensource. unix is free os.

learn operating system.

linux linux which one you choose.

linux linux which one you choose.

linux is easy to learn.unix is a multiuser os.Learn unix .unix is a
powerful.

linux is easy to learn.unix is a multiuser os.Learn unix .unix is a

powerful.

- Periyar University — CDOE| Self-Learning Material

%+ Printing only the replaced lines: Use the -n option along with the /p print flag to
display only the replaced lines. Here the -n option suppresses the duplicate rows
generated by the /p flag and prints the replaced lines only one time.

Syntax:
$sed -n 's/unix/linux/p’ geekfile.txt
Output
linux is great o0s. unix is opensource. unix is free os.
linux linux which one you choose.
linux is easy to learn.unix is a multiuser os.Learn unix .unix is a
powerful.
» If you use -n alone without /p, then the sed does not print anything.
#+ Replacing string on a range of lines: You can specify a range of line numbers to
the sed command for replacing a string.
Syntax:
$sed '1,3 s/unix/linux/' geekfile.txt
Output
linux is great 0s. unix is opensource. unix is free os.
learn operating system.
linux linux which one you choose.
unix is easy to learn.unix is a multiuser os.Learn unix .unix is a
powerful.
» Here the sed command replaces the lines with range from 1 to 3.

+ Deleting lines from a particular file: SED command can also be used for
deleting lines from a particular file. SED command is used for performing deletion
operation without even opening the file

Examples
To delete a particular line say n in this example
Syntax: $ sed 'nd' filename.txt
Example:
$ sed '5d' filename.txt
To Delete a last line
Syntax:
$ sed '$d' filename.txt
To Delete line from range x to y

Syntax: $ sed 'x,yd' filename.txt

- Periyar University — CDOE| Self-Learning Material

Example:

$ sed '3,6d' filename.txt

To Delete from nth to last line
Syntax: $ sed 'nth,$d' filename.txt
Example:

$ sed '12,$d' filename.txt

To Delete pattern matching line
Syntax: $ sed '/pattern/d’ filename.txt
Example:

$ sed '/abc/d' filename.txt

Getting introduced to the gawk
gawk command in Linux is used for pattern scanning and processing language.
The awk command requires no compiling and allows the user to use variables, numeric
functions, string functions, and logical operators. It is a utility that enables programmers to
write tiny and effective programs in the form of statements that define text patterns that are
to be searched for, in a text document and the action that is to be taken when a match is
found within a line.
gawk command can be used to :
Scans a file line by line.
e Splits each input line into fields.
o Compares input line/fields to pattern.
e Performs action(s) on matched lines.
o Transform data files.
o Produce formatted reports.
e Format output lines.
e Arithmetic and string operations.
« Conditionals and loops.
Syntax:
gawk [POSIX / GNU style options] -f progfile [--] file ...
gawk [POSIX / GNU style options] [--] 'program’ file ...

- Periyar University — CDOE| Self-Learning Material

https://www.geeksforgeeks.org/awk-command-unixlinux-examples/

Important Options:

e -f progfile, —file=progfile: Read the AWK program source from the file program-
file, instead of from the first command line argument. Multiple -f (or —file) options
may be used.

e -Ffs, —field-separator=fs: It uses FS for the input field separator (the value of the
FS predefined variable).

e -v var=val, —assign=var=val: Assign the value val to the variable var, before

execution of the program begins.

Examples:
= -F: It uses FS for the input field separator (the value of the FS predefined variable).

gawk -F: {print $1} /etc/passwd

linux@ubuntu:~/files$ gawk -F: '{ print $1 }' /fetc/passwd

systemd-network
systemd-resolve
syslog
messagebus

» -f: Read the AWK program source from the file program-file, instead of from the first
command line argument. Multiple -f (or —file) options may be used.

gawk -F: -f mobile.txt /etc/passwd

- Periyar University — CDOE| Self-Learning Material

gawk -F:
:/bin/bash
:root:froot: fbin/bash
:root:/froot: /bin/bash
:root:/froot: /bin/bash
:root:froot: /bin/bash
1:daemon: fusr/sbin: fusr/sbin/nologin
:jusrfsbin: fusrysbin/nologin
:fusrfsbin: fusr/sbin/nologin
tjusrfsbin: fusrysbin/nologin
:jusrfsbin: fusrysbin/nologin

-f mobile.txt fetc/passwd

:fusrfsbin/nologin
:jusrfsbin/nologin
:/jusrfsbin/nologin
:fusrfsbin/nologin
:jusrfsbin/nologin
:/jusrfsbin/nologin

:fusrfsbin/nologin
:jusrfsbin/nologin
:/jusrfsbin/nologin
:fusrfsbin/nologin
:/bin: /bin/sync
:/bin: /bin/sync
:/bin: /fbin/sync
:/bin: /fbin/sync
:/bin: /bin/sync
:games: jusr fgames: fusr/sbin/nologin

160

games: fusr fgames:
games: fusr fgames:
games: fusr fgames :
games: fusr fgames:
:fwvarfcache/man:

iman
tman

Jusrfysbin/nologin
fusrysbin/nologin
Jusrysbin/nologin
Jusrfysbin/nologin
fusrysbin/nologin

:fvar fcache/man:
:fvarfcache/man:
:fwvarfcache/man:
:fvar fcache/man:

Jusrysbin/nologin
Jusrfysbin/nologin
fusrysbin/nologin
Jusrysbin/nologin

Iman
iman
tman

Built In Variables:

e NR: It keeps a current count of the number of input line.

e NF: It keeps a count of the number of fields within the current input record.

e FS: It contains the field separator character which is used to divide fields on the
input line.

e RS: It stores the current record separator character.

e OFS: It stores the output field separator, which separates the fields when Awk
prints them.

e ORS: It stores the output record separator, which separates the output lines
when Awk prints them.

Examples

NR: gawk {print NR "-" $1 } mobile.txt

inux@ubuntu:~/files$ gawk '{print NR "-" $1}' mobile.txt
1-Deepak

-Sunil

-Aman

-Kuldeep
5-Sundip
inux@ubuntu:~/filess

- Periyar University — CDOE| Self-Learning Material

e RS: gawk 'BEGIN{FS=":"; RS="-"} {print $1, $6, $7}' /etc/passwd

iles$S gawk 'BEGIN{FS= F ' {print $1,%6,57}' Jetc/passwd
root /root /bin/bash

data 34 backup

Reporting System (admin) 65534 nobody

network /run/systemd/netif fusr/sbin/nologin
systemd

resolve [run/systemd/resolve jfusr/sbin/nologin
syslog

autoipd /var/lib/avahi

autoipd usbmux daemon,,, fvar/lib/usbmux

pk

dispatcher /var/run/speech

dispatcher /fnonexistent

daemon colord colour management daemen,,, /var/lib/colord
initial

setup /run/gnome

Tinux@ubuntu: ~ ilesS gawk "'BEGIN{F OFS="-"3}% {print S$1,56.,57}"
root- froot-/bin/bash

daemon- fusrfsbin- fusr/sbin/nologin

bin-/bin- fusr/sbin/nologin

sys- fdev- fusr/sbin/nologin

sync- /bin-/bin/sync

games - fusr/games- fusr/sbin/nologin

man- fvar fcache/man- fusr/sbin/nologin
1p-/var/fspool/1lpd- fusr/sbin/nologin

mail- /fvary/mail- fusr/fsbin/nologin

news- fvar/spool/news- fusr/sbin/nologin

uucp- fvarfspoolfuucp- fusr/sbin/nologin

proxy-/bin- fusr/sbin/nologin
www-data- fvar fwww- fusr /sbin/nologin

backup- fvar /backups- fusr/sbin/nologin

list-fvar/list- fusr/sbin/nologin

irc-/varfrun/ircd- fusr/sbin/nologin

gnats- /fvar/lib/gnats- fusr/sbin/nologin

nobody - fnonexistent- fusr/sbin/nologin

systemd-network- /run/systemd/netif- fusr/sbin/nologin
systemd-resolve- /frun/systemd/resolve- fusr/sbin/nologin
syvslog- /fhome/syslog- /usr/sbin/nologin

messagebus- fnonexistent- fusr/sbin/nologin
_apt-/nonexistent- /fusr/sbin/nologin

vuidd- frunfuuidd- fusr/fsbin/nologin
avahi-autoipd-/var/lib/avahi-autoipd- fusr/sbin/nologin
usbmux- fvar f1ib//fusbmux- fusr/sbin/nologin
dnsmasq-/var/lib/misc- fusr/sbin/nolegin

rtkit- /proc- /usr/sbin/nologin

cups-pk-helper- /fhome/cups-pk-helper-/usr/sbin/nologin
speech-dispatcher- /var/run/speech-dispatcher- /bin/false
whoopsie- /nonexistent-/bin/false
kernoops- /- fusr/sbin/nologin

saned- /fvar/lib/saned- fusr/sbin/nologin

pulse- /var /run/puls Jusr/sbin/nologin
avahi-/var/run/favahi-daemon- /usr/sbin/nologin

colord- fvar/Llib/colord- fusr/sbin/nologin

hplip- /fvar/run/hplip- /bin/ffalse

JSfetcfpasswd

Periyar University — CDOE| Self-Learning Material

Exploring sed Editor basics
The Sed command is a powerful tool in the Linux and Unix operating systems that
is used for streamlining text processing. Sed, short for Stream EDitor, can be used to
search, delete, insert, or replace characters within a file or multiple files with minimal effort.
Basic ‘sed’ Syntax:
The basic syntax for ‘sed’ is as follows:
Example
sed [options] ‘command" inputfile
‘Options’: These are optional and can modify the behavior of ‘sed’. Some common options
include “-I’ (in-place edit), -n’ (suppress automatic printing), and others.
'‘Command": This is the ‘sed’ command you want to execute.
‘Inputfile’: This is the file you want to process. If you omit it, ‘sed’ will read from standard

input.

Common ‘sed’ Commands

Search and Replace: The ‘s’ (substitute) command is used to search for a pattern and
replace it with another.
Code: sed 's/old/new/" inputfile
e This command replaces the first occurrence of "old" with "new" on each line.
Global Search and Replace
» To replace all occurrences of a pattern on each line, use the ‘g’ flag.
Code: sed 's/old/new/g" inputfile
Using Regular Expressions:
» We can use regular expressions in ‘sed’ to match more complex patterns. For
example, to replace "apple" or "apples" with "fruit":
Code: sed 's/apple[s]*$/fruit/g' inputfile
Delete Lines
» The ‘d’ command is used to delete lines that match a pattern:
Code: sed '/pattern/d’ inputfile
Print Specific Lines
» Use the ‘-n’ option to suppress automatic printing and the ‘p’ command to print
specific lines

Code: sed -n '5,10p" inputfile

- Periyar University — CDOE| Self-Learning Material

Multiple Commands
» You can combine multiple ‘sed” commands using semicolons. For example,
replacing and then deleting lines.
Code: sed -e 's/old/new/" -e '/pattern/d’ inputfile

In-Place Editing
To edit a file in-place (i.e., save changes to the original file), you can use the ‘-I’
option. Be cautious when using this option, as it will overwrite the input file. Always make a
backup before using it.
Code: sed -i 's/old/new/" inputfile
A few examples of common ‘sed’ operations
e Replace all occurrences of "cat" with "dog" in a file and save the changes:
Code: sed -i 's/cat/dog/g" myfile.txt
¢ Delete lines containing the word "apple" from a file:
Code: sed -i '/apple/d’ myfile.txt
e Print lines between lines that match "start" and "end":
Code: sed -n '/start/,/end/p' myfile.txt

Let us sum up
The sededitor writes to a destination file only the data lines that contain the text
pattern.

The casecommand should call the appropriate function according to the character
selec- tion expected from the menu. It's always a good idea to use the default case

command character (the asterisk) to catch any incorrect menu entries.

Check your progress

1. What is the correct syntax for defining a function in bash?*
A) function name { ... } B) def name { ... }

C) func name { ... } D) function name ={ ... }

2. How do you return a value from a function in bash?*

A) return value B) exit value C) output value D) echo value

- Periyar University — CDOE| Self-Learning Material

3. How do you access a variable defined outside a function inside the function in

bash?*
A) By using the global keyword B) By using the extern keyword

C) Variables are automatically accessible D) By passing the variable as a

parameter

4. How do you define an array in bash?*
A) array = (valuel value2 value3) B) array = [valuel, value2, value3]

C) array = {valuel, value2, value3} D) array = <valuel, value2, value3>

5. Which statement is true about recursion in bash functions?*

A) Bash does not support recursion.

B) Recursion is supported but can lead to a stack overflow if not managed carefully.
C) Recursion is the only way to loop in bash.

D) Recursion is faster than iteration in bash.

6. How do you include a library file in a bash script?*

A) include "library.sh" B) source library.sh

C) import library.sh D) use library.sh

7. Can you define and use functions directly from the bash command line?*

A) Yes B) No

8. Which command is commonly used to create text menus in a bash script?*

A) menu B) select C) choose D) options

9. Which tool can be used to create graphical dialogs in bash scripts?*

A) dialog B) zenity C) yad D) All of the above

- Periyar University — CDOE| Self-Learning Material

10. Which toolkit is commonly used for adding X Window graphics in bash scripts?*

A) GTK B) QT C) Xlib D) All of the above

11. What is the primary use of the sed command in bash?**
A) Text editing B) File compression

C) Network management D) Package installation

12. What does gawk stand for?**

A) GNU AWK B) General AWK C) Global AWK D) Graphical AWK

13. How do you use sed to replace the first occurrence of "foo" with "bar" in a file?**
A) sed 's/foo/bar/" filename B) sed 'r/foo/bar/' filename

C) sed 'c/foo/bar/' filename D) sed 't/foo/bar/' filename

Here are the answers:
1.A) 2.A) 3.C) 4.A) 5B) 6.B) 7.A) 8B) 9.D)

10.D) 11.A) 12.A) 13. A)

Self assessment questions

How to defining sed editor command in command line. Give an example.
Difference between Array and variable function.

What is function recursion with example?

How to creating a library and using functions on command line.

Explain in detailed about sed and gawk commands with examples.

o 00k~ w b E

Write a shell script program to create a following GUI tools.
e Creating text menu

e Building text window widget

7. How to use edit command at the sed editor.

- Periyar University — CDOE| Self-Learning Material

8. Write about functions and arrays in Linux.

9. Explain about adding color to scripts layout and the functions.

Open source e-content links

https://www.tutorialspoint.com/unix/unix-shell-functions.htm
https://www.geeksforgeeks.org/function-command-in-linux-with-examples/

https://www.geeksforgeeks.org/introduction-to-graphical-user-interface-of-redhat-

linux-operating-system/

Glossary

sed is a powerful stream editor used for filtering and transforming text.

sed: The command itself to invoke the stream editor.

Usage: sed [options] 'script’ [file]

s/pattern/replacement/: Substitutes replacement for pattern.

Usage: sed 's/old/new/ file
g: Applies substitution globally on each line (i.e., all occurrences).

Usage: sed 's/old/new/g’ file

i\: Inserts a line before the matched pattern.

Usage: sed '/pattern/i\text to insert' file

a\: Appends a line after the matched pattern.

Usage: sed '/pattern/a\text to append' file

d: Deletes lines that match a pattern.

Usage: sed '/pattern/d’ file

p: Prints lines that match a pattern.

- Periyar University — CDOE| Self-Learning Material

Usage: sed -n ‘/pattern/p’ file

-e: Allows multiple commands to be executed.

Usage: sed -e '‘commandl' -e '‘command?2' file

-n: Suppresses automatic printing of pattern space (use with p for controlled output).

Usage: sed -n 'p' file
-f: Reads sed commands from a file.

awk is a powerful programming language for pattern scanning and processing.

awk: The command to invoke the AWK programming language.

Usage: awk [options] ‘program’ [file]

{}: Denotes an action block in an awk program.

Usage: awk {print $1}' file

$n: Represents the nth field in a record (default delimiter is whitespace).

Usage: awk {print $1, $3} file
BEGIN: Block executed before any input is processed.

Usage: awk 'BEGIN {print "Start"} {print $1}' file
END: Block executed after all input is processed.

Usage: awk {print $1} END {print "End"} file

/pattern/: Selects records that match a pattern.

Usage: awk ‘/pattern/ {print $1} file

print: Outputs text or variables.

Usage: awk {print $1, $2} file
FS: Field Separator, sets the delimiter for fields.

Usage: awk 'BEGIN {FS=","} {print $1} file

- Periyar University — CDOE| Self-Learning Material

OFS: Output Field Separator, sets the delimiter for output fields.

Usage: awk 'BEGIN {OFS="\t"} {print $1, $2} file

NR: Built-in variable representing the current record number.

Usage: awk {print NR, $0}' file

NF: Built-in variable representing the number of fields in the current record.

e-books

1.Linux Desktop Hacks: Tips & Tools for Customizing and Optimizing Your Desktop" by
Kyle Rankin

2.KDE 4.0: Using the KDE Desktop Environment" by David F. Swersky

- Periyar University — CDOE| Self-Learning Material

Objectives:

UNIT = IV

Utilize regular expressions (regex) to perform complex pattern matching, search,
and text manipulation tasks efficiently.

Master advanced sed features to perform sophisticated text processing tasks,
such as multi-line editing, complex substitutions, and script-based manipulations.

Leverage advanced features of gawk to perform sophisticated data processing,
reporting, and text manipulation tasks.

4.1 Regular Expressions

Regexps are acronyms for regular expressions. Regular expressions are special

characters or sets of characters that help us to search for data and match the complex

pattern. Regexps are most commonly used with the Linux commands:- grep, sed, tr, vi.

S Symbol Description

no
It is called a wild card character; It matches any one character other

! than the new line.

2 A It matches the start of the string.

3 $ It matches the end of the string.

4 . It matches up to zero or more occurrences i.e. any number of times
of the character of the string.

5 \ It is used for escape following character.

6 0 It is used to match or search for a set of regular expressions.

7 ? It matches exactly one character in the string or stream.

128

+ Using “.” (dot) to match strings.

Using “.” we can find a string if we do not know the exact string, or we just remember

“n

only the start and end of the string, we can use “.” As a missing character, and it will fill

that missing character. Let’s see an example for better understanding:’ File contains the

fruit's name, and we are going to use regular expressions on this file.

Script
#!/bin/sh
Basic Regular Expression

1. Using “.” to match strings.

loading the text file fruits_file="cat fruit.txt | grep App.e

here the original (answer) word will be Apple,

but because we don’t know the spelling of the Apple,

will put a dot (.) in that place.

echo “1. Using "’ to find the original word, whereas given word is ‘App.e"”

displaying output

echo “Output.”

echo “$fruits_file”

Output

amninder@pop-o0s:

Apple
amninder@pop-os:

1. Using '.' to find the original word, wherea

Output:

+ Using “A” (caret) to match the beginning of the string

Using “*”, we can find all the strings that start with the given character. Example for

a better understanding. Here we are trying to find all the fruit names that start with

the letter B:

Script

#1/bin/sh

Basic Regular Expression

2. Using “N” (caret) to match the beginning of the string
loading the text file

129

fruits_file="cat fruit.txt | grep "B’

echo “2. Using "V’ to find out all the words that start with the letter ‘B"”
displaying output
echo “Output.”

echo “$fruits_file”

pop-05s: ¢ o
" to0 find out all the words

#+ Using “$” (dollar sign) to match the ending of the string

Using “$” we can find all the strings that end with the given character. Example for a

better understanding. Here we are trying to find all the fruit's names that end with the

letter e:

Script

#!/bin/sh

Basic Regular Expression

3. Using “$” (dollar) to match the ending of the string

loading the text file

fruits_file="cat fruit.txt | grep e$

echo “3. Using ‘$’ to find out all the words that end with the letter ‘e"”
displaying output

echo “Output.”

echo “$fruits_file”

130

Qutput

Jp-0S: $
$' to find out all the

* Using “*” (an asterisk) to find any number of repetitions of a string
Using “*”, we can match up to zero or more occurrences of the character of the
string. Example for a better understanding. Here we are trying to find all the fruit's names
that

has one or more occurrences of ‘ap’ one after another in it.

Script

#!/bin/sh

Basic Regular Expression

4. Using “*” to find any number of repetition of a string

loading the text file

fruits_file="cat fruit.txt | grep ap*le’

echo “4. Using ™’ to find out all the fruits name that has one or more
occurrence of ‘ap’ one after another in it”

displaying output

echo “Output:”

echo “$fruits_file”

131

Qutput

amninder@pop-os: % sh '/home/amninder/Desktop/
' to find out all the

of 'ap' one after another in it

Output:

Custard apple
Pineapple
amninder@pop-os: s 1

+ Using “\” (a backslash) to match the special symbol

Using “\” with special symbols like whitespace (”), newline(“\n”), we can find strings
from the file. Example for a better understanding. Here we are trying to find all the fruit’s
names that have space in their full names.

Script

#!/bin/sh

Basic Regular Expression

5. Using \” to match the special symbol

loading the text file

fruits_file="cat fruit.txt | grep 4 “

echo “5. Using \’ to find out all the fruits name that has single space in

their full name”

displaying output

echo “Output.”

echo “$fruits_file”

amnin] D'S 1
5. Usir ' to find out all the fruits nam

4+ Using “()” (braces) to match the group of regexp.

132

Using “()”, we can find matched strings with the pattern in the “()". Example for a
better understanding. Here we are trying to find all the fruit's names that have space in

their full name.

Script

#!/bin/sh

Basic Regular Expression

6. Using “()” (braces) to match the group of regexp.

loading the text file

fruits_file="cat fruit.txt | grep -E “(fruit)”

echo “6. Using ()’ to find out all the fruits name that has word ‘fruit’ in it”
displaying output

echo “Output.”

echo “$fruits_file”

$ sh '/home/amninder/Desktop/Geeks/regex.sh’
6. Using . ruit' in it
Output

Miracle fruit
Passionfruit
Star fruit

Ugli fruit
amninder@pop-os:

+ Using “?”(question mark) to find all the matching characters
Using “?”, we can match 0 or 1 repetitions of the preceding. It will match either ‘a’ or
‘ab’. Example for better understanding. Here we are trying to find all the fruit's names

that have the character ‘Ch’ in them.

133

Script

#!/bin/sh

Basic Regular Expression

7. Using “?”(question mark) to match the

loading the text file

fruits_file="cat fruit.txt | grep -E Ch?"

echo “7. Using ‘?’ to find out all the fruits name that has ‘Ch’in it”
displaying output

echo “Output.”

echo “$fruits_file”

4 sh '/home/amninder/Desktol ks/regex.sh'
to find out all the fruits name that has 'Ch’ t

Extending our patterns

0,

% Wildcards: Wildcards are characters used to match patterns in filenames.
Common wildcards include:

o * (asterisk): Matches any sequence of characters.

e ? (question mark): Matches any single character.

e [] (square brackets): Matches any character within the specified range

or set.

Example
To match all files with a .txt extension in a directory, we can use the wildcard

* txt.

134

s Regular Expressions: Regular expressions (regex or regexp) are powerful tools

for pattern matching in text. We can use them with tools like grep, sed, and awk.
e grep can be used to search for patterns within files or text streams. Script:
grep 'pattern’ file.txt
e sed can be used to search and replace patterns in text
Script: sed 's/pattern/replacement/g' file.txt
« awk is a versatile text processing tool that can be used to work with

structured data. It supports regular expressions for pattern matching.

7
A X4

Brace Expansion: Brace expansion is used to generate strings by specifying a
range or list of values inside curly braces. For example, you can generate a list
of file names with different extensions. Script: echo file.{txt,md,csv}

R/
A X4

Extended Globbing: Some shells, such as Bash, support extended globbing
patterns for more advanced matching. You can enable this feature using shopt
-s extglob. With extended globbing, you can do things like matching files based
on specific patterns or excluding certain patterns. For example, to list all files

except those ending in .bak: Script: shopt -s extglob Is !(*.bak)

R/
A X4

Combining Patterns: You can combine patterns using logical operators, such as
&& (and) and || (or), to create more complex matching conditions. For example,
you can list files that are either .txt or .md files: Script: Is *.txt || Is *.md.

o%

% Parameter Expansion: Shell scripts also allow for parameter expansion, which
can be used to manipulate variables and strings. For example, you can extract a
substring from a variable. Script: text="Hello, World" echo ${text:0:5}

Output

"Hello"

Custom Functions: In shell scripting, you can create custom functions to extend

7/
o

your pattern matching and manipulation capabilities. These functions can be
used to encapsulate complex logic and make your scripts more modular and

readable.

Creating expressions

The expr command in Unix evaluates a given expression and displays its

corresponding output. It is used for:

135

e Basic operations like addition, subtraction, multiplication, division, and modulus

on integers.
« Evaluating regular expressions, string operations like substring, length of strings

etc.
Syntax: $expr expression

Using expr for basic arithmetic operations:

Example: Addition

$expr 12 + 8

Example: Multiplication

$expr 12 * 2

Output

root@genesis101: ~ (]

File Edit View Search Terminal Help
:~# expr 12 + 8

:~# expr 12 * 2

:f'#[]

Performing operations on variables inside a shell script

Example: Adding two numbers in a script
echo "Enter two numbers"

read x

read y

sum="expr $x + $y

echo "Sum = $sum"

136

Output

Open ~ || @ | P Save [| = |l - o «x root@genesis101: ~/Documents

File Edit View Search Terminal Help
:~/Documents# chmod 777 script.sh
echo "Enter two numbers” :~/Documents# ./script.sh
Enter two numbers

jh.txt X script.sh X

read x
read y
:~/Documents# D
sum= expr $x + $y
echo "Sum = $sum”

Comparing two expressions

Example

x=10

y=20

matching numbers with '='

res="expr $x = $y’

echo $res

displays 1 when argl is less than arg2
res="expr $x \< $y°

echo $res

display 1 when argl is not equal to arg2
res="expr $x \I= $y°

echo $res
Output
Open v || @ | <P~ Save 3 & @ ¢ root@genesis101: ~/Documents
- File Edit View Search Terminal Help
est x SCripE.sh 2 :~/Documents# ./script.sh
x=10
y=20

:~/Documents# D

matching numbers with '='
res="expr $x = $y
echo $res

displays 1 when argl is less than arg2
res="expr $x \< $y
echo $res

display 1 when argl is not equal to arg2
res="expr $x \!= $y
echo $res

137

For String operations

Example: Finding length of a string
x=geeks

len="expr length $x

echo $len
Output
open v || @ | =P~ Save = [[FEE s root@genesis101: ~/Documents
- File Edit View Search Terminal Help
= :
jhtet LS script.sh X ~/Documents# ./script.sh
x=geeks

:~/Documents# D

len="expr length $x°

echo $len

Finding substring of a string

x=geeks
sub="expr substr $x 2 3°

#extract 3 characters starting from index 2

echo $sub
Output
Open v || @ | SC'P- Save = o x root@genesis101: ~/Documents
: File Edit View Search Terminal Help
JieE x script.sh X ~/Documents# ./script.sh
x=geeks

:~/Documents# [:|

sub="expr substr $x 2 3
#extract 3 characters starting from index 2

echo $sub

138

4.2 Advanced sed
1.

Search and Replace: sed is commonly used for search and replace operations
using these command, we can replace occurrences of a pattern with another
string.

Script: sed 's/old_pattern/new_pattern/g' input.txt

Using Regular Expressions: sed supports regular expressions for pattern
matching. This allows you to perform complex substitutions. Example: to replace
all email addresses in a file with "EMAIL_HIDDEN":
Script: sed 's/[A-Za-z0-9. %+-\+@[A-Za-z0-9.-|\+\.[A-Za-
z]{2 \)YEMAIL_HIDDEN/g" input.txt

In-Place Editing: To edit a file in-place, use the -i option. This allows you to save
the changes back to the original file:

Script: sed -i 's/old_pattern/new_pattern/g' input.txt

Deleting Lines: sed can delete lines that match a pattern. For example, to delete
all lines containing the word "DELETE":
Script: sed /DELETE/d" input.txt

Inserting and Appending Text: An insert or append text before or after specific
lines. For example, to add a line at the beginning of a file:

Script: sed '1i This is the first line' input.txt

Using Capture Groups: Capture groups allow you to extract and rearrange
parts of the matched pattern. For example, to swap first and last names in a list:
Script: sed 'sA(.*\), \(.*\)A2 \1/g' names.txt

Multiple Operations: Chain multiple sed operations together by separating
them with semicolons. For instance, to replace multiple patterns in one pass:
Script: sed -e 's/patternl/replacementl/g' -e 's/pattern2/replacement2/g’

input.txt

139

8. Using Variables: Use shell variables within your sed commands, making your
scripts more dynamic. For example, using a variable to store the replacement
text:

Script: replacement="new_value" sed "s/old_value/$replacement/g" input.txt

9. Conditional Editing: Conditionally edit lines based on patterns or line numbers.
For example, to replace a line only if it matches a specific pattern:

Script: sed '/pattern/s/old/new/" input.txt

10.Script Files: For complex operations, you can store sed commands in a
separate script file and execute it with the -f option:

Script: sed -f myscript.sed input.txt

11.Escape Special Characters: If you need to match or replace special characters
(e.g., /, &, or ™), make sure to escape them with backslashes in your sed

command.

Using multiline commands
Use a single ampersand (&) or two ampersands (&&) to separate multiple
commands on one command line.
There are 3 ways to run multiple shell commands in one line:
% Use;
No matter the first command cmdl run successfully or not, always run the second
command cmd2:
Script:
#cmdl; cmd2
$ cd myfolder; Is # no matter cd to myfolder successfully, run Is
% Use &&
Only when the first command cmd1l run successfully, run the second command
cmd2:
Script:
#cmdl && cmd2
$ cd myfolder && Is # run Is only after cd to myfolder

140

% Use||
Only when the first command cmd1 failed to run, run the second command cmd2:
Script:
#cmd1l || cmd2
$ cd myfolder || Is # if failed cd to myfolder, “Is™ will run

Understanding the hold space

The Hold command puts a newline in the hold space and then appends the
current line to the hold space. Even when the hold space is empty, the Hold command
places a newline before the contents of the pattern space. The exchange command (x

) swaps the contents of the hold space and the pattern space.

+ Sed has two types of internal storage space:

« Pattern space: In which is used as part of the typical sed execution flow. Pattern
space is the internal sed buffer where sed places, and modifies, the line it reads
from the input file.

e Hold space: This is an additional buffer available where sed can hold temporary
data. Sed allows you to move data back and forth between pattern space and
hold space, but you cannot execute the typical sed commands on the hold space.
Pattern space gets deleted at the end of every cycle in a typical sed execution
flow. However, the content of the hold space will is retained from one cycle to the
next; it is not deleted between cycles.

To create a new text file to be used for the sed hold space examples:
Example
$ vi empnametitle.txt
John
CEO
Jason Smith
IT Manager
Raj Reddy

Sysadmin

Anand Ram

141

Developer

Jane Miller
Sales Manager
% ‘H’ command: We can use the ‘H command to copy the current pattern space
(line) into the hold space.
Example
sed 'h' file.txt
% ‘h’ command: The ‘H’ command appends the current pattern space to the hold
space, separated by a newline character. This can be useful for accumulating
lines in the hold space.
Example
sed 'H' file.txt
% ‘g’ command: To copy the contents of the hold space back into the pattern
space, we can use the ‘g’ command. This allows you to retrieve the stored text
and work with it in your script.
Example
sed 'h;g’ file.txt
% ‘g’ command: The ‘G’ command appends the contents of the hold space to the
pattern space, separated by a newline character. This is useful when you want
to combine the stored text with the current line.
Example
sed 'h;G' file.txt
% Clearing the hold space: We can clear the hold space using the X’ command.
Example

sed 'h;x' file.txt

Negating a command

In Bash, you can negate a condition using the "!" operator. We can negate the
result of any command or condition with the "!" operator. It's also worth noting that you
can use [[...]] instead of [...] for string and numeric comparison.

Example

if[1"$x" -eq 5]

then

echo "x is not equal to 5"

142

fi

e You can also negate a string comparison using the "I" -
if [1"$s" ="hello"]
then
echo "s is not equal to hello"
fi

You can negate the result of any command or condition with the "!" operator.

Example

if [["$x"!1=51]

then

echo "x is not equal to 5"

fi

It's also worth noting that you can use [[...]] instead of [...] for string and numeric

comparison.

Changing the flow

R/
L X4

L)

Conditional Statements (if-else-fi): Conditional statements are used to make
decisions in your script based on specific conditions.
Example
if [$num -gt 10]; then
echo "Number is greater than 10"
else
echo "Number is not greater than 10"
fi
Case Statements (case-esac): Case statements are used when you have
multiple conditions to test against a variable. It is similar to a switch statement in
other programming languages.
Example
case $choice in
"1y
echo "You chose option 1"

2"

143

echo "You chose option 2"

X/

7/

*)
echo "Invalid choice"

Loops (for, while, until): Loops are used for repetitive tasks. we can use ‘for’,

‘while’, and ‘until’ loops to execute a block of commands multiple times.
For Loop
Example
for var in list; do
commands to execute for each item in the list
Done.
While Loop
Example
while [condition]; do
commands to execute as long as the condition is true
Done
Until Loop
Example
until [condition]; do
commands to execute until the condition becomes true

Done

Break and Continue: Inside loops, you can use ‘break’ to exit the loop

prematurely and ‘continue’ to skip the current iteration and move to the next

one.
Example
foriin {1..10}; do
if [$i -eq 5]; then
break # exit the loop wheniis5
fi
echo "lteration: $i"

done

144

Replacing via a pattern

% Using ‘sed’: ‘sed’ (stream editor) is a powerful tool for text manipulation,

including text replacement using patterns.
« ‘pattern’: This is the regular expression pattern you want to search for in the
input.
o ‘replacement’: This is the text you want to replace the matched pattern with.
e ‘g’ Thisis an optional flag that tells ‘sed’ to replace all occurrences of the pattern
in each line. If you omit it, ‘sed’ will replace only the first occurrence in each line.
Example of using ‘sed’ to replace "oldtext" with "newtext" in a file:
sed 's/oldtext/newtext/g" input.txt > output.txt
» To edit the file in-place without creating a new file, you can use the ‘-i’ flag:
sed -i 's/oldtext/newtext/g’ input.txt
% Using ‘awk’: awk is another versatile tool for text manipulation, and it can be
used to replace text based on patterns.
Syntax
awk {gsub(/pattern/, "replacement)}1' inputfile > outputfile
« ‘pattern’: This is the regular expression pattern you want to search for.
« ‘replacement’: This is the text you want to replace the matched pattern with.
Example of using ‘awk’ to replace "oldtext" with "newtext" in a file:
awk ‘{gsub(/oldtext/, "newtext")}1' input.txt > output.txt
% Using Shell String Manipulation:
» For simple replacements within a shell script, we can use parameter expansion
Example
string="This is the old text"
newstring="${string/old text/new text}"

echo "$newstring"

Using sed in Scripts

The Linux sed command is most commonly used for substituting text. It searches
for the specified pattern in a file and replaces it with the wanted string. To replace text
using sed , use the substitute command s and delimiters (in most cases, slashes - /)

for separating text fields.

145

:~% sed "sjf/box/bin/' fToxinbox.txt

Knox in bin.
Fox in socks.

Knox on fox in socks in bin.
Ssocks on Knox and Knox in bin.

Fox in socks on bin on Knox.

Creating sed utilities
SED command in UNIX stands for stream editor and it can perform lots of
functions on file like searching, find and replace, insertion or deletion. Though most
common use of SED command in UNIX is for substitution or for find and replace.
Here's a general outline of how to create a custom ‘sed’ utility:
% Define the pattern to match: Start by defining the regular expression pattern
that you want to match in the input text.
% Specify the replacement text: Determine the text that you want to replace the
matched pattern with.

% Use s command: Within your custom ‘sed’ script, use the s command to

perform the substitution.

Syntax: sed -e 's/pattern/replacement/g’ inputfile

‘pattern’: This is the regular expression pattern to match.

« ‘replacement’: This is the text with which you want to replace the matched
pattern.
e ‘g’ An optional flag to replace all occurrences in each line. Omitting it replaces
only the first occurrence in each line.
o Execute the custom sed script: Run your ‘sed’ script with the ‘-e’ option and
provide the input file you want to process.
Example of creating a custom ‘sed’ utility that replaces all occurrences of "apple” with
"banana” in a text file.

sed -e 's/apple/banana/g’ input.txt

146

Creating More Complex sed Utilities

For more complex ‘sed’ utilities, you can combine multiple ‘sed’ commands
and use control flow constructs. For example, you can use ‘if’ conditions and ‘b’
(branch) commands to perform different substitutions based on conditions.
Example of a custom ‘sed’ utility that replaces "apple” with "banana" but only if the
line starts with "fruit:":
sed -e '/Mruit:/s/apple/banana/g’ input.txt

4.3 Advanced gawk

o%

«* Regular Expressions: Gawk, like Awk, supports regular expressions. You can
use regular expressions to pattern match and extract specific data from text files.

Example: gawk ‘/pattern/ { print $2 }' file.txt

X/

» Advanced Field Separators: Gawk allows you to set custom field separators
with the -F option. This is useful when working with files that have delimiters other
than spaces or tabs. For instance, to process a file with a semicolon delimiter:

Example: gawk -F ;' '{ print $2 }' file.txt

L)

% Built-in Functions: Gawk provides numerous built-in functions for text and
numeric operations. You can use functions like split(), substr(), length(), and
sprintf() to manipulate data. For example, you can split a field into an array:

Example: gawk { split($3, arr, "-"); print arr[2] }' file.txt

K/
*

% User-Defined Functions: Gawk allows you to create your own functions for

custom data processing. This can make your scripts more modular and

maintainable. Here's an example of defining and using a custom function:
Example: gawk ‘function myfunc(x) { return x * 2 } { print myfunc($1) }'
file.txt

% Arrays: Gawk supports arrays, which are useful for storing and processing data.
You can use arrays to aggregate and analyze data from a file:
Example: gawk '{ count[$1]++ } END { for (key in count) print key,
count[key] } file.txt

147

s Control Structures: Gawk supports control structures like if-else and while

loops, allowing you to perform conditional operations and iterative tasks within

your scripts.

% Output Formatting: Gawk offers extensive control over the formatting of output.
You can use the printf function to format and display data in a specific way.
Example: gawk '{ printf("Name: %s, Age: %d\n", $1, $2) }' file.txt

% Reading Multiple Files: Gawk can process multiple files and perform actions
separately on each file. Use the ARGIND variable to identify the current file
being processed.

Example: gawk ‘{ print "File:", ARGIND, "Line:", NR, $0 }' filel.txt file2.txt

L)

% Advanced Data Processing: Gawk is capable of more advanced data
processing tasks, such as calculating statistics, parsing structured data formats,

and generating reports.

X/

% Error Handling: Gawk provides error handling mechanisms, allowing you to
handle and report errors gracefully within your scripts.

Reexamining gawk
¢ Built-in Variables: Gawk provides a variety of built-in variables to help you work
with your data:
e NF represents the number of fields in the current record.
« NRindicates the current record number.
o FSisthe input field separator (default is whitespace).
e OFS is the output field separator (used when printing fields).
e« RS is the input record separator (default is a newline).

« ORS is the output record separator (used when printing records).

s Pattern Matching: Gawk uses regular expressions for pattern matching,
allowing you to search for specific text patterns within your data. we can use

regular expressions to match and process data selectively.
148

X/
°e

L)

K/

K/
L X4

Control Structures: Gawk supports conditionals (‘if’, ‘else’,’else if’) and loops
(‘while, for’) for controlling the flow of your data processing. We can use these

control structures to perform complex logic within your scripts.

Functions: Gawk provides a rich set of built-in functions for both text and
numeric operations.

e gsub(): Global substitution of text.

o index(): Find the position of a substring in a string.

e length(): Determine the length of a string.

o split(): Split a string into an array based on a delimiter.

e substr(): Extract a substring from a string.

e system(): Run shell commands from within an awk script.

User-Defined Functions: We can define your own custom functions in Gawk,

which makes your scripts more modular and easier to maintain.

Arrays: Gawk supports arrays, both indexed and associative. This is useful for
aggregating data, creating data structures, and performing more advanced data

processing tasks.

BEGIN and END Blocks: Gawk allows you to specify actions to be taken before
processing begins (BEGIN block) and after processing is complete (END block).

These blocks are typically used for setup and cleanup tasks.

Multi-File Processing: You can process multiple input files in a single Gawk
command, and Gawk keeps track of the current file being processed using the
‘ARGIND’ variable.

Error Handling: Gawk provides error handling mechanisms that allow you to

deal with exceptional situations or invalid data gracefully.

149

% Formatted Output: We can use the printf function to format the output, allowing

you to control the appearance of your results, align columns, and format numeric

values.

X/
°e

Special Patterns: Gawk includes special patterns like ‘BEGIN’ (actions before
processing starts), ‘END’ (actions after processing ends), and ‘NR’ (matching by

record number), which are useful for implementing specific behaviors.

% Data Processing: Gawk is not limited to text processing; you can use it for more
advanced data manipulation tasks such as computing statistics, parsing

structured data formats, and generating reports.

X/

% Regular Expressions in Awk: Gawk, as an extension of Awk, supports
advanced regular expressions, providing more powerful text pattern matching

capabilities.

Using variables in gawk

Assigning Values to Variables: You can assign values to variables in Gawk
using the ‘=’ operator. Variables do not require explicit data types; Gawk dynamically
determines the type based on the assigned value.

Script: variable_name = value

Example

my_number = 42

To assign a string: my_string = "Hello, World!"

Using Variables in Your Script: We can use variables within your Awk script
by referencing them with a dollar sign (‘$’) followed by the variable name. Variables are
used to store and manipulate data in your script.

Example
Using a variable in a print statement

print "The value of my_number is: " my_number

Using a variable in an if condition
if (my_number > 10) {

150

print "my _number is greater than 10"

}

Built-in Variables: Gawk provides several built-in variables that are automatically

populated and can be used in your script. For example:

‘NF’: The number of fields in the current record.
‘NR’: The current record number.

‘FS’: The input field separator.

‘OFS’: The output field separator.

‘RS’: The input record separator.

‘ORS’: The output record separator.

User-Defined Functions with Variables: We can also create your own user-

defined functions that accept and return variables. This allows you to modularize your

code and perform specific operations.

Example

User-defined function that doubles a number
function double(x) {

return x * 2

}

Use the function with a variable

my_number =7

result = double(my_number)

print "Double of " my_number " is " result

Using structured commands

Many programs require some sort of logic flow control between the commands

in the script. There are many commands that allows the script to skip over executed

commands based on tested conditions. this commands called as structured commands.

Conditionals (if-else): Conditional statements allow you to execute different

actions based on whether a certain condition is met.

Example
if (num % 2 ==0) {
print "Even"

} else {
151

print "Odd"

}

Loops (while and for)
Loops allow you to repeat a set of commands multiple times. Gawk provides both
‘while’ and ‘for’ loops.
Example for: While Loop
i=1
while (i <=5) {
print i
i++
}
Example for: for Loop
for (I=1;i<=5;i++) {
print i
}

User-Defined Functions: If we define own functions in Gawk. Functions allow you to
encapsulate a block of code and execute it by calling the function.
Example, a function to calculate the square of a number

function square(x) {

return X * x
num=4

result = square(num)

print "The square of " num " is " result

Control Flow Commands (break and continue)
Gawk supports the ‘break’ and ‘continue’ statements for controlling the flow
within loops. ‘break’ is used to exit a loop prematurely, and ‘continue’ is used to skip

the current iteration and move to the next one.

152

Example

for (i=1;i<=10; i++) {
if (1% 2==0){
continue

}
print i

}

Formatting the printing

Using echo with Escape Sequences: We can use escape sequences with the ‘echo’
command to format the output. Common escape sequences include:
e ‘\n’: Newline
« At Tab
o ‘\b’: Backspace
o ‘\r’: Carriage return
Example
echo "First Line\nSecond Line"
Output
First Line
Second Line
Using printf: The ‘printf’ command provides extensive control over output formatting.
To specify the format of the output using format specifiers. For example, ‘%s’ is used
for strings, ‘%d’ for integers, and ‘%f’ for floating-point numbers.
Example
printf "Name: %s, Age: %d\n" "John" 30
Output
Name: John, Age: 30

Controlling Field Width and Alignment: The width and alignment of fields in ‘printf’

to make output columns align neatly. To specify a field width, use a number between

153

the ‘%’ sign and the format specifier. To use ‘-‘ to specify left alignment, or omit it for

right alignment.
Example
printf "%-10s %5s\n" "Name" "Age"
printf "%-10s %5d\n" "John" 30
printf "%-10s %5d\n" "Alice" 25

Output

Name Age
John 30
Alice 25

Colorizing Output: We can add color to your output using ANSI escape codes. For
example, to print text in red.

Example

echo -e "\e[31lmThis is red text\e[Om"

Output

This will display "This is red text" in red color.
Formatting Variables with printf: If we format variables using ‘printf’ as well. This is
especially useful for aligning columns when printing tabular data.

Example

name="John"

age=30

printf "%-10s %5d\n" "$name" "$age"
Alignment with column: If we want to align columns in a more structured way, you can
use the ‘column’ command. It can automatically format and align columns from input
text.

Example

echo -e "Name\tAge\nJohn\t30\nAlice\t25" | column -t -s $\t'

Output

Name Age

John 30

Alice 25

Working with functions

The function is a command in Linux that is used to create functions or methods.

It is used to perform a specific task or a set of instructions. It allows users to create
154

shortcuts for lengthy tasks making the command-line experience more efficient and

convenient.
Defining Functions
Example
say_hello() {
echo "Hello, World!"
}
Calling Functions: To call a function, simply use its name followed by parentheses
Example for calling Function

say_hello

Passing Arguments to Functions: Functions can accept arguments, which are
accessed using the special variables ‘$1°, ‘$2’, and so on, where ‘$1’ represents the
first argument, ‘$2’ represents the second argument, and so on. Inside the function, you
can refer to these variables.

Example

print_arguments() {

echo "First argument: $1"

echo "Second argument: $2"

}

Output

print_arguments "Apple" "Banana"

Returning Values from Functions: Functions can return values using the ‘return’
statement. The return value is stored in the special variable ‘$?’.

Example

add() {

local result=$(($1 + $2))

return $result

}
Output

add 57
result=$"?

echo "The sum is $result"

155

Local Variables: To avoid variable naming conflicts between functions and the main
script, you can declare variables as ‘local’ within a function. These local variables are
only accessible within the function.

Example

calculate() {

local result=$(($1 * 2))

echo "Inside function: result is $result"

}

result=10

calculate $result

echo "Outside function: result is $result"

Using Functions in Your Scripts: To place function definitions anywhere in your script,
typically at the top or bottom. Functions can be called from any part of the script.

Example

#!/bin/bash

say_hello() {

echo "Hello, World!"

}

print_arguments() {

echo "First argument: $1"

echo "Second argument: $2"

}

add() {

local result=$(($1 + $2))

return $result

}

say_hello

print_arguments "Apple" "Banana”

add57

result=$"?

echo "The sum is $result"

156

Let us sum up

grep: Searches for patterns in files using regular expressions.

Usage: grep [options] 'pattern’ [file]

Options:

-e : Specifies the pattern.

-i : Ignore case (case-insensitive search).

-r or -R : Recursively search directories.

-v : Invert match (show lines that do not match).

egrep: Extended grep that supports extended regular expressions.
Usage: egrep [options] 'pattern’ [file]

Note: egrep is now deprecated; use grep -E instead.
grep -E: grep with extended regular expression support.
Usage: grep -E [options] 'pattern’ [file]

Options: Same as grep, with extended regex features.
sed: Stream editor for filtering and transforming text.

Check vour progress

1. What is a regular expression?*

A) A mathematical formula

B) A sequence of characters that define a search pattern
C) A programming language

D) A file format

2. Which symbol is used to match any single character in a regular expression?*

A) * B). C) " D) $

157

3. Which character is used to indicate zero or more occurrences of the previous

element in a regular expression?*

A) + B) * C)? D) |

4. How do you match the beginning of a line in a regular expression?*

A" B) $ C)\b D) \A

5. Which sed command allows processing of multiline input?*

A)n B) N C)p D) d

6. What is the purpose of the hold space in sed?*
A) To store the current pattern space for later use
B) To delete the current line

C) To append text to the current line

D) To replace text in the current line

7. How do you negate a command in sed?*
A) By using ! before the command B) By using " before the command

C) By using ~ before the command D) By using # before the command

8. Which command in sed is used to jump to a label?*

A) b B) t C) g D) h

9. What is the basic syntax for replacing text in sed?*
A) s/pattern/replacement/ B) r/pattern/replacement/

C) c/pattern/replacement/ D) d/pattern/replacement/

158

Q10. Can sed commands be included directly in shell scripts?

A) Yes B) No

11. How do you create a sed script file for complex text processing tasks?*
A) By writing commands in a file and using sed -f filename

B) By writing commands directly in the terminal

C) By creating an alias

D) By using the awk command

12. What is gawk primarily used for?*
A) Text editing B) Text pattern scanning and processing

C) File compression D) Network management

13. How do you define a variable in gawk?*
A) variable=value B) var value

C) let variable = value D) variable := value

14. Which command in gawk allows for conditional execution?*

A) if B) for C)while D) All of the above

15. Which function in gawk is used to format and print output?*

A) print B) printf C) echo D) format

16. How do you define a function in gawk?*

A) function name { ... } B) def name { ... }

C) func name { ... } D) name() { ... }

159

Here are the answers:

1.B) 2.B) 3.B) 4.A) 5B) 6.A) 7.A) 8.A) 9.A

10.A) 11.A) 12.B) 13.A) 14.D) 15.B) 16.A)

Self Assessment Questions :

1. Hoe to validate a phone number in Regular Expressions.
Comment on sed editor gawk program.

What is Regular Expression with example?

Explain in detailed about Advanced sed commands with examples.
Explain advanced gawk commands with examples.

How to remove an HTML tag using sed commands

Describe about regular expression in detail.

© N o g s~ w D

What is reexamining gawk? Write about uses of variable in it.

Open source e-content link

https://lwww.geeksforgeeks.org/how-to-use-regular-expressions-regex-on-linux/

https://data-flair.training/blogs/regular-expression-in-linux/

Glossary

Usage: sed [options] 'script' [file]

Options:

-e : Allows multiple commands.

-n : Suppresses automatic printing of pattern space.

awk: A programming language for pattern scanning and processing.

Usage: awk [options] ‘pattern { action }' [file]
Options:
-F : Set the input field separator.

perl: A programming language with powerful regular expression capabilities.

Usage: perl -pe 'pattern’ [file]
160

Options:

-e : Allows execution of Perl code from the command line.
-p : Loop over lines and print (similar to sed).

find: Searches for files in a directory hierarchy.

Usage: find [path] [options] [expression]
Options:

-name : Match files by name with a pattern.
-regex : Match files by regex pattern.
Regex Syntax and Concepts

A Anchors the match at the start of a line.

Usage: "pattern

$: Anchors the match at the end of a line.

Usage: pattern$

.. Matches any single character except a newline.

Usage: a.b (matches acb, alb, etc.)

*: Matches zero or more of the preceding element.

Usage: a* (matches a, aa, aaa, etc.)
+: Matches one or more of the preceding element.

Usage: a+ (matches a, aa, aaa, etc.)

?: Matches zero or one of the preceding element (makes it optional).

Usage: a? (matches " or a)

{n}: Matches exactly n occurrences of the preceding element.

Usage: a{3} (matches aaa)

{n,}: Matches n or more occurrences of the preceding element.

Usage: a{2,} (matches aa, aaa, aaaa, etc.)

161

{n,m}. Matches between n and m occurrences of the preceding element.

Usage: a{2,4} (matches aa, aaa, aaaa)

[]: Defines a character class; matches any one of the enclosed characters.

Usage: [abc] (matches a, b, or c)
["]: Defines a negated character class; matches any character not enclosed.

Usage: [*abc] (matches any character except a, b, or c)

|: Acts as a logical OR between patterns.

Usage: a|b (matches a or b)

(): Groups patterns together.

Usage: (abc)+ (matches one or more occurrences of abc)

\\: Escapes special characters.

Usage: \. (matches a literal dot)
\d: Matches any digit (in extended regex or Perl).

Usage: \d (matches any digit, equivalent to [0-9])

\D: Matches any non-digit (in extended regex or Perl).

Usage: \D (matches any non-digit)
\w: Matches any word character (alphanumeric and underscore, in extended regex

or Perl).

e-books

1. "sed & awk: UNIX Power Tools" by Dale Dougherty and Arnold Robbins

2. "Mastering Regular Expressions" by Jeffrey E. F. Fried|

162

Unit -V
Objectives:

e Expand your scripting capabilities by learning to use and write scripts for
alternative shell environments beyond the default /bin/bash.

e Create simple script utilities that can automate common tasks, improve
productivity, and handle repetitive operations efficiently.

e Develop scripts to interact with databases, web services, and email systems to
automate data management, web scraping, and communication tasks.

5.1 Working with Alternative Shells:

Understanding the dash shell
What Is the dash Shell?

* The Debian dash shell has had an interesting past. It's a direct descendant of
the ash shell, a simple copy of the original Bourne shell available on Unix

systems.

+ Kenneth Almquist created a small-scale version of the Bourne shell for Unix
systems and called it the AlImquist shell, which was then shortened to ash.

» This original version of the ash shell was extremely small and fast but without
many advanced features, such as command line editing or history features,

making it difficult to use as an interactive shell

« The NetBSD developers customized the ash shell by adding several new

features, making it closer to the Bourne shell.

* The Debian Linux distribution created its own version of the ash shell (called
Debian ash, or dash) for inclusion in its version of Linux. For the most part, dash
copies the features of the NetBSD
version of the ash shell, providing the advanced command line editing

capabilities.

163

The dash Shell Features :

The dash command line parameters

TABLE 23-1 The dash Command Line Parameters

Parameter Description

-a Exports all variables assigned to the shell

-c Reads commands from a specified command string

-e If not interactive, exits immediately if any untested command fails

-f Displays pathname wildcard characters

-n If not interactive, reads commands but doesn't execute them

-u VWrites an error message to STDERR when attempting to expand a variable that
is not set

-V Writes input to STDERR as it is read

-X Writes each command to STDERR as it is executed

-I lgnores EOF characters from the input when in interactive mode

-1 Forces the shell to operate in interactive mode

-m Turns on job contrel (enabled by default in interactive mode)

-5 Reads commands from STDIN (the default behavior if no file arguments are
present)

-E Enables the emacs command line editor

-V Enables the vi command line editor

« Positional parameters

Here are the positional parameter variables available for use in the dash shell:

B 50: The name of the shell
B Sn: The nth position parameter

B 5+*: Asingle value with the contents of all the parameters, separated by the first
character in the IFS environment variable, or a space if IFS isn't defined

B 5@ Expands to multiple arquments consisting of all the command line parameters
B $#: The number of positional parameters

B 57: The exit status of the most recent command

B 5-: The current option flags

B 55: The process ID (PID) of the current shell

B §!: The process ID (PID) of the most recent background command

164

User-defined environment variables:

* The dash shell also allows you to set your own environment variables. As with
bash, you can define a new environment variable on the command line by

using the assignment statement:

$ testing=10 ; export testing
$ echo $testing

10

$

Without the export command, user-defined environment variables are visible

only in the current shell or process.

e The dash built-in commands

Command Deascription

alias Creates an alias string to reprasent a text string

bg Continues specified job in backgreund mode

od Switches to the specified directory

=cho Displays a text string and environment variables

eval Concatenates all arguments with a space

exac Replaces the shell process with the specified command

exit Tarminatas the shell process

export Exports the specified environment variable for use in all child shells

£g Continues specified job in foreground mode

getopts Obtains options and arguments from a list of parameters

hash Maintains and retrieves a hash table of recent commands and their locations

pwd Displays the value of the current working directory

read Reads a line from STDIN and assign the value to a variable

readonly Reads a line from STDIN to a variable that can’t be changed

printf Displays text and variables using a formatted string

set Lists or sets option flags and envirenment variables

ghift Shifts the positional parameters a specified number of times

test Evaluates an expression and returns 0 if true or 1 if false

times Displays the accumulated user and system times for the sheall and all shell
processes

trap FParses and executes an action when the shell receives a specified signal

typ= Intarprets the specified name and displays the resolution (alias, built-in, com-
mand, keywerd)

ulimit Clueries or sets limits on processas

umask Sets the value of the default file and directary permissions

unalias Removes the specified alias

165

* Scripting in dash

Using arithmetic

Three ways to express a mathematical operation in the bash shell script:

m Using the expr command: expr operation
m Using square brackets: $[operation]

m Using double parentheses: $((operation))

The dash shell supports the expr command and the double parentheses method but
doesn’t support the square bracket method. This can be a problem if you have lots of

mathematical operations that use the square brackets.

The proper format for performing mathematical operations in dash shell scripts is to use
the double parentheses method:

S cat testSh
#!/bin/dash
testing mathematical operations

valuel=10
value2=15

valued=5((4valuel * %5value2))
echo "The answer is Svalue3i"

4 ./test5b
The answer is 150
5

Now the shell can perform the calculation properly.

The test command

However, the test command available in the dash shell doesn’t recognize the == symbol
for text comparisons. Instead, it only recognizes the = symbol. If you use the ==
symbol in your bash scripts, you need to change the text comparison symbol to just a

single equal sign:

166

5 cat testT
#!/bin/dash
testing the = comparison

testl=abodaf
testl=abocdef

if [Stestl = Stest2]
then

echao "They're the sams!"
else

echo "They're different”
fi
3 . J/Stest7
They're the same!

=

« The function Command

The dash shell doesn’t support the function statement. Instead, in the dash shell you
must define a function using the function name with parentheses. If you’re writing
shell scripts that may be used in the dash environment, always define functions

using the function name and not the function() statement:

% cat testlo
#!/bin/dash
testing functions

funcl () {
echo "This is an example of a function”
}

count=1
while [Scount -le 5]
do
funcl
count=3%({ Scount + 1 })
done
echo "This is the end of the loop"
funcl
echo "This is the end of the script”
% . /testlo

This is an example of a function
This is an example of a function
This is an example of a function
This is an example of a function
This is an example of a function

This is the end of the leoop
This is an example of a function
This is the end of the script

]

167

« The zsh Shell

Another popular shell that you may run into is the Z shell (called zsh). The zsh

shell is an open source Unix shell developed by Paul Falstad.

* The following are some of the features that make the zsh shell unique:
m Improved shell option handling
m Shell compatibility modes

m Loadable modules

* Aloadable module is the most advanced feature in shell design. As you’ve seen
in the bash and dash shells, each shell contains a set of built-in commands

that are available without the need for external utility programs.

The zsh shell provides a core set of built-in commands, plus the capability to add more
command modules.

Parts of the zsh Shell

Shell options Most shells use command line parameters to define the behavior
of the shell. The zsh shell uses a few command line parameters to define the operation
of the shell, but mostly it uses options to customize the behavior of the shell. You can
set shell options either on the command line or within the shell itself using the set

command.

TABLE 23-3 The zsh Shell Command Line Parameters

Parameter Description

-C Executes only the specified command and exits

-1 Starts as an interactive shell, providing a command line interface prompt
-8 Forces the shell to read commands from STDIN

-o Specifies command line options

168

Built-in commands

TABLE 23-4 The zsh Core Built-ln Commands

Command Description
alias Defines an alternate name for a command and arguments
autoload Preloads a shell function into memary for quicker access
bg Executes a job in background mode
bindkey Binds keyboard combinations to commands
builtin Executes the specified built-in command instead of an executable file of
the same name
bye The same as exit
cd Changes the current working directory
chdir Changes the current working directory
command Executes the specified command as an external file instead of a function or
built-in command
declare Sets the data type of a variable (same as typeset)
dirs Displays the contents of the directory stack
disable Ternporarily disables the specified hash table elements
disown Removes the specified job from the job table
echo Displays variables and text
emulate Sets zsh to emulate another shell, such as the Bourne, Korn, or C shells
enable Enables the specified hash table elements
eval Executes the specified command and arguments in the current shell
fo Selects a range of commands from the history list
£g Executes the specified job in foreground mode
float Sets the specified variable for use as a floating point variable
functions Sets the specified name as a function
getln Reads the next value in the buffer stack and places it in the specified
variable
getopts Retrieves the next valid option in the command line arguments and places
it in the specified variable
hash Directly medifies the contents of the command hash table
history Lists the commands contained in the history file
integer Sets the specified variable for use as an integer value
jobs Lists information about the specified job or all jobs assigned to the shell
process
kill Sends a signal (Default SIGTERM) to the specified process or job
let Evaluates a mathematical operation and assigns the result to a variable
limit Sets or displays resource limits
local Sets the data features for the specified variable
log Displays all users currently logged in who are affected by the watch
parameter
logout Same as exit, but works only when the shell is a login shell
popd Remowves the next entry from the directory stack
exec Executes the specified command and arguments replacing the current

shell process

exit Exits the shell with the specified exit status. If none specified, uses the exit
status of the last command

export Allows the specified environment variable names and wvalues to be used in
child shell processes

false Returns an exit status of 1

169

print

Displays variables and text

printf Displays variables and text using C-style format strings
pushd Changes the current working directory and puts the previous directory in
the directory stack
pushln Places the specified arguments into the editing buffer stack
pwd Displays the full pathname of the current working directory
read Reads a line and assigns data fields to the specified variables using the 1IFs
characters
readonly Assigns a value to a variable that can't be changed
rehash Rebuilds the command hash table
set Sets options or positional parameters for the shell
setopt Sets the options for a shell
shift Reads and deletes the first positional parameter and shifts the remaining
ones down one position
where Displays the pathname of the specified command if found by the shell
Which Displays the pathname of the specified command using csh-style output
zeompile Compiles the specified function or script for faster autoloading
Command Description
source Finds the specified file and copies its contents into the current location
suspend Suspends the execution of the shell until it receives a SIGCONT signal
test Returns an exit status of 0 if the specified condition is TRUE
times Displays the cumulative user and system times for the shell and processes
that run in the shell
trap Blocks the specified signals from being processed by the shell and exe-
cutes the specified commands if the signals are received
true Returns a zero exit status
ttyetl Locks and unlocks the display
type Displays how the specified command would be interpreted by the shell
typeset Sets or displays attributes of variables
ulimit Sets or displays resource limits of the shell or processes running in the shell
umask Sets or displays the default permissions for creating files and directories
unalias Removes the specified command alias
unfunction Removes the specified defined function
unthash Removes the specified command from the hash table
unlimit Removes the specified resource limit
unset Removes the specified variable attribute.
unsetopt Removes the specified shell option
wait Waits for the specified job or process to complete
whence

Displays how the specified command would be interpreted by the shell
170

« Add-in modules

« There’s a long list of modules that provide additional built-in commands for the

zsh shell, and the list continues to grow as resourceful programmers create new

modules.

TABLE 23-5 The zsh Modules
Module Description
zsh/datetime Additional date and time commands and variables
zsh/files Commands for basic file handling
zsh/mapfile Access to external files via associative arrays
zsh/mathfune Additional scientific functions
zsh/pcre The extended regular expression library
zsh/net/socket Unix domain socket support
zsh/stat Access to the stat system call to provide system statistics
zsh/system Interface for various low-level system features
zsh/net/tep Access to TCP sockets
zsh/zftp A specialized FTP client command
zsh/zselect Blocks and returns when file descriptors are ready
zsh/zutil Various shell utilities

- Viewing and adding modules

The zmodload command is the interface to the zsh modules. You use this

command to view, add, and remove modules from the zsh shell session. Using

the zmodload command without any command line parameters displays the

currently installed modules in your zsh shell:

% zmodload
zsh/zutil
zsh/complete
zsh/main
zsh/terminfo
zsh/zle
zsh/parameter
%

171

Different zsh shell implementations include different modules by default. To add
a new module, just specify the module name on the zmodload command line:

% zmodload zsh/zftp

%

Scripting with zsh

Mathematical operations

As you would expect, the zsh shell allows you to perform mathematical functions
with ease. In the past, the Korn shell has led the way in supporting mathematical
operations by providing support for floating-point numbers. The zsh shell has full
support for floating point numbers in all its mathematical operations!
Performing calculations The zsh shell supports two methods for performing

mathematical operations:
m The let command
m Double parentheses

When you use the let command, you should enclose the operation in double

guotation marks to allow for spaces:
% let valuel="4*51/3.2"
% echo $valuel

6.3750000000
%

The second method is to use the double parentheses. This method
incorporates two techniques for defining the mathematical operation:
% valuel=$((4 *5.1))

% ((value2 =4*5.1))

% printf "%6.3f\n" $valuel $value2

20.400

20.400

%

172

Notice that you can place the double parentheses either around just the operation
(preceded by a dollar sign) or around the entire assignment statement. Both methods

produce the same results.
Mathematical functions

With the zsh shell, built-in mathematical functions are either feast or famine. The
default zsh shell doesn’t include any special mathematical function. However, if you
install the zsh/mathfunc module, you have more math functions than you’ll most

likely ever need:

* % valuel=$((sqrt(9)))
zsh: unknown function: sqrt
% zmodload zsh/mathfunc
% valuel=$((sqrt(9)))
% echo $valuel
3.
%

« Structured commands

» The zsh shell provides the usual set of structured commands for
your shell scripts:
m if-then-else statements
m for loops (including the C-style)
m while loops
m until loops
m select statements

m case statements

The zsh shell uses the same syntax for each of these structured commands that
you’re used to from the bash shell. The zsh shell also includes a different structured
command called repeat. The repeat command wuses this format:

repeat param do commands done

173

% cat testl
#!/bin/zsh
using the repeat command

valuel=5((10 / 2))
repeat $wvaluel

do
echo "This is a test"

done
5 ./testl
This is a test
This is a test
This is a test
Thiz iz a test
This is a test
%

Functions

The zsh shell supports the creation of your own functions either using the
function command or by defining the function name with parentheses:
% function functestl {
> echo "This is the test1 function”

}

% functest2() {

> echo "This is the test2 function”
}

% functestl

This is the testl function

% functest2

This is the test2 function

%

5.2 Writing Simple Script Utilities:
Automating backups

» Whether you're responsible for a Linux system in a business environment or

just using it at home, the loss of data can be catastrophic.

» To help prevent bad things from happening, it's always a good idea to perform
regular backups (or archives).

174

>

>

However, what’s a good idea and what’s practical are often two separate

things.

Trying to arrange a backup schedule to store important files can be a

challenge.

Archiving data files

>

If you’re using your Linux system to work on an important project, you can

create a shell script that automatically takes snapshots of specific directories.

Designating these directories in a configuration file allows you to change them

when a particular project changes.

This helps avoid a time consuming restore process from your main archive

files.

This section shows you how to create an automated shell script that can take
snapshots of specified directories and keep an archive of your data’s past

versions.

Obtaining the required functions:

>

>

The workhorse for archiving data in the Linux world is the tar command .

The tar command is used to archive entire directories into a single file. Here’s
an example of creating an archive fi le of a working directory using the tar

command:

The tar command responds with a warning message that it's removing the
leading forward slash from the pathname to convert it from an absolute

pathname to a relative pathname

This allows you to extract the tar archived files anywhere you want in your

filesystem.
You can accomplish this by redirecting STDERR to the /dev/null fi le

Because a tar archive file can consume lots of disk space, it's a good idea to
compress the file. You can do this by simply adding the -z option. This

compresses the tar archive file into a gzipped tar file, which is called a tarball.

175

Creating a daily archive location

>

If you are just backing up a few files, it's fine to keep the archive in your
personal directory.
However, if several directories are being backed up, it is best to create a central
repository archive directory
5 sudo mkdir /archive
[sudo] password for Christine:
3
5 1ls -1d /archive
drwxr-xr-x. 2 root root 4096 Aug 27 14:10 /archive
?
After you have your central repository archive directory created, you need to
grant access to it for certain users. If you do not do this, trying to create files in
this directory fails, as shown here:
§ mv Files To Backup /archive/
mv: cannot move 'Files To Backup' to
'[archive/Files To Backup': Permission denied
You could grant the users needing to create files in this directory permission via
sudo or create a user group. In this case, a special user group is created,
Archivers:

5 sudo groupadd Archivers

$

$ sudo chgrp Archivers /archive

S
% 1s -1d farchive

176

drwxr-xr-x. 2 root Archivers 4096 Aug 27 14:10 /archive

3

S sudo usermod -aG Archivers Christine
[sudo] password for Christine:

9
$ sudo chmod 775 /archive

3
$ 1g -1d /archive
drwxrwxr-x. 2 root Archivers 4096 Aug 27 14:10 /archive

5

After a user has been added to the Archivers group, the user must log out and log back
in for the group membership to take effect. Now files can be created by this group’s

members without the use of super-user privileges:

5 mv Files To Backup /archive/

5

5 1ls /archive
Files To Backup

5

Creating an hourly archive script

» If you are in a high-volume production environment where files are changing

rapidly, a daily archive might not be good enough.

» If you want to increase the archiving frequency to hourly, you need to take

another item into consideration

When backing up files hourly and trying to use the date command to timestamp each
tarball, things can get pretty ugly pretty quickly. Sifting through a directory of tarballs

with filenames looking like this is tedious:

archive010211110233.tar.gz
Instead of placing all the archive files in the same folder, you can create a directory

hierarchy for your archived files.

177

Month

Da
01 y

farchive/hourly 01

02

02

01

First, the new directory /archive/hourly must be created, along with the appropriate

permissions set upon it.

5 sudo mkdir /archive/hourly
[sudo] password for Christine:

5

$ sudo chgrp Archivers /archive/hourly

$

$ 1s -1d /archive/hourly/

drwxr-xr-x. 2 root Archivers 4096 Sep 2 09:24 /archive/hourly/
$

$ sudo chmed 775 /archive/hourly

$

$ 1s -1d /archive/hourly

drwxrwxr-x. 2 root Archivers 4096 Sep 2 09:24 /archive/hourly

§

178

After the new directory is set up, the Files To Backup configuration file for the hourly
archives can be moved to the new directory:

S cat Files To Backup
fusr/local/Production/Machine Errors
/home /Development /Simulation Logs

S
$ mv Files To Backup /archive/hourly/

$
- Running the hourly archive script

+ As with the Daily_Archive.sh script, it's a good idea to test the Hourly_Archive.sh
script before putting it in the cron table. Before the script is run, the permissions must
be modified. Also, the hour and minute is checked via the date command. Having
the current hour and minute allows the final archive filename to be verified for

correctness:

5 chmod u+x Hourly Archive.sh

9
5 date +3k%M
1011

S
5 ./Hourly Archive.sh

Starting archive...

Archive completed
Resulting archive file is: /archive/hourly/09/02/archivel0ll.tar.gz

S
$ 1s /archive/hourly/08/02/
archivel(ll.tar.gz

$

Managing User Accounts:

Managing user accounts is much more than just adding, modifying, and deleting accounts.

» You must also consider security issues, the need to preserve work, and the accurate

management of the accounts.

» This can be a time-consuming task.

179

Obtaining the required functions:

Deleting an account is the more complicated accounts management task. When

deleting an account, at least four separate actions are required:

1. Obtain the correct user account name to delete.

2. Kill any processes currently running on the system that belongs to that
account.

3. Determine all files on the system belonging to the account.

4. Remove the user account.
Obtaining the required functions

Deleting an account is the more complicated accounts management task. When
deleting an account, at least four separate actions are required:

1. Obtain the correct user account name to delete.

2. Kill any processes currently running on the system that belongs to that account.
3. Determine all fi les on the system belonging to the account.

4. Remove the user account.

> It's easy to miss a step. The shell script utility in this section helps you avoid

making such mistakes.
Getting the correct account name :

The first step in the account deletion process is the most important: obtaining
the correct user account name to delete. Because this is an interactive script, you
can use the read command to obtain the account name. you can use the -t option
on the read command and timeout after giving the script user 60 seconds to

answer the question:

» echo "Please enter the username of the user "
echo -e "account you wish to delete from system: \c"
read -t 60 ANSWER

180

Creating a function to get the correct account name:

The first thing you need to do is declare the function’s name, get_answer. Next, clear
out any previous answers to questions your script user gave using the unset command

function get_answer {

#
unset ANSWER

» To ask the script user what account to delete, a few variables must be set and
the get_answer function should be called. Using the new function makes the
script code much simpler:

« LINE1="Please enter the username of the user "
LINE2="account you wish to delete from system:"
get_answer
USER_ACCOUNT=$ANSWER
Verifying the entered account name
Because of potential typographical errors, the user account name that was
entered should be verified. This is easy because the code is already in place to
handle asking a question:
LINE1="Is $USER_ACCOUNT the user account "
LINE2="you wish to delete from the system? [y/n]"

get_answer

case SANEWER in
v|¥|YES|yes|Yes|yEs|yeS|YEs|yES)
&
H
*)
echo
echo "Because the account, SUSER_ACCOUNT, is not "
echo "the one you wish to delete, we are leaving the script..."
echo
exit

181

Determining whether the account exists
» The user has given us the name of the account to delete and has verified it.

> Now is a good time to double-check that the user account really exists on the

system.

» The -w option allows an exact word match for this particular user account:
USER_ACCOUNT_RECORD=$(cat /etc/passwd | grep -w SUSER_ACCOUNT)

Removing any account processes

» The script has obtained and verified the correct name of the user account to be
deleted.

» In order to remove the user account from the system, the account cannot own

any processes currently running.
» Thus, the next step is to fi nd and kill off those processes.

» Here the script can use the ps command and the -u option to locate any

running processes owned by the account.
* ps-u$USER_ACCOUNT >/dev/null #Are user processes running?
Finding account files :

» When a user account is deleted from the system, it is a good practice to archive

all the fi les that belonged to that account.

» Along with that practice, it is also important to remove the fi les or assign their

ownership to another account.
Removing the account

Finally, we get to the main purpose of our script, actually removing the user account

from the system. Here the userdel command is used:
userdel SUSER_ACCOUNT
Monitoring Disk Space:

» One of the biggest problems with multi-user Linux systems is the amount of

available disk space.

182

» In some situations, such as in a file-sharing server, disk space can fill up almost

immediately just because of one careless user.
Obtaining the required functions:

» The first tool you need to use is the du command This command displays the

disk usage for individual files and directories.

The -s option lets you summarize totals at the directory level. This comes in handy
when calculating the total disk space used by an individual user. Here’s what it looks
like to use the du command to summarize each user's $HOME directory for the /home

directory contents:

$ sudo du -5 /home/*
[sudo] password for Christine:

4204 Shoms /Christine
=a Shome fConsultant
=2 Ahome fDevel opmearnt
. Shome /M MMoSuchiUsaer
L= Jhome /fSamantha

25 Ahome /S Timothy
10=24 Shome fusexrl

b=

The -s option works well for users’ $SHOME directories, but what if we wanted to

view disk consumption in a system directory such as /var/log?

$ sudo du -s /var/log/*

4 /var/log/anaconda.ifcfqg.log
20 /var/log/anaconda.log

32 /var/log/anaconda.program.log
108 /var/log/anaconda.storage.log
a0 /var/log/anaconda.syslog

56 /var/log/anaconda.xlog

116 /var/log/anaconda.yum. log
4392 /var/log/audit

4 /var/log/boot.log

[...]

s

183

* The listing quickly becomes too detailed. The -S (capital S) option works better
for our purposes here, providing a total for each directory and subdirectory

individually. This allows you to pinpoint problem areas quickly:

5 sudo du -5 fvar/log/

4 /var/log/ppp

4 /var/log/sssd

3020 /var/log/sa

B0 /var/log/prelink

4 /var/log/samba/old
4 /var/log/samba

4 /var/log/ntpstats
4 /var/log/cups

4392 /var/log/audit

420 /var/log/gdm

4 /var/log/httpd

152 /var/log/ConscleKit
2976 /var/log/

=

Because we are interested in the directories consuming the biggest chunks of
disk space, the sort command is used on the listing produced by du: The -n option
allows you to sort numerically. The -r option lists the largest numbers first

(reverse order). This is perfect for finding the largest disk consumers.

$ sudo du -8 /wvar/log/ | sort -rm

4392 /var/log/audit
3020 JSvard/logSsa
Z2aTs SrarSlog)
420 Svar/log/gdm
152 Svar/log/ ConsoleKit
20 Svar/logSprelink
4 JvarSlogSsssd
4 JSvar/logfsambasold
4 Svar/log/ samba
4 Swar/log/ppp
4 Svar/log/ ntpstats
4 SrarSlog/ hoopd
4 SvarSlog/ocups
=]

184

Creating the script:

» To save time and effort, the script creates a report for multiple designated

directories.

» A variable to accomplish this called CHECK_DIRECTORIES is used. For our
purposes here, the variable is set to just two directories:

CHECK _DIRECTORIES=" /var/log /home*

« Each time the for loop iterates through the list of values in the variable
CHECK_DIRECTORIES, it assigns to the DIR_CHECK variable the next value

in the list:

for DIR_CHECK in $CHECK_DIRECTDRIES
do

[...]

du -5 SDIR CHECK
[...]

done

Running the script:

5 1s -1 Big Users.sh
-rw-r--r--. 1 Christine Christine 910 Sep 3 08:43 Big Users.sh

3
5 sudo bash Big Users.sh

[sudo] password for Christine:

5

$ 1s disk space*.rpt

disk space 090314.rpt

3

5 cat disk space 090314.rpt
Top Ten Disk Space Usage

185

for /var/log /home Directories

The /var/log Directory:

- 4496
3056
3032
480
152
80

Wi 0o =] v N e L ka2

4
4
4
i

=
=

/var/log/audit
[var/log
[var/log/sa
/var/log/gdm
/var/log/ConsoleKit
/var/log/prelink
[var/log/sssd
[var/log/samba/old
/var/log/samba
/var/log/ppp

The /home Directory:

34084
14372
4440
4440
4440
3012
3012
2968
2968
0: 2968

R e R o B = T (e L T [T W I

/home /Christine/Documents/temp/reports/archive

/home /Christine/Documents/temp/reports

/home /Timothy/Project 42/log/universe

/home /Timothy/Project 254/01d Data/revision.56

/home /Christine/Documents/temp/reports/report.txt
/home /Timothy/Project 42/log

/home /Timothy/Project 254/01d Data/data2039432

/home /Timothy/Project 42/log/answer

/home /Timothy/Project 254/01d Data/data2039432/answer
/home /Christine/Documents/temp/reports/answer

5.3 Producing Scripts for Database, Web, and E-Malil

Data base:

+ A database is an organized collection of structured information, or data, typically

stored electronically in a computer system. A database is usually controlled by

a database management system (DBMS).

186

https://www.oracle.com/in/database/what-is-database/

— il
ACID Properties in DBMS ki

A Atorioit The entire transaction takes place at once
.2 or doesn't happen at all.

The database must be consistent before
and after the transaction.

—»] C = Consistency}——

ACID
= Isoiation Multiple Transactions occur independently
without interference.
D = Durability The changeslof a successful. transaction
occurs even if the system failure occurs. BG.
~ .
Atomicity:

« By this, we mean that either the entire transaction takes place at once or
doesn’t happen at all. There is no midway i.e. transactions do not occur
partially. Each transaction is considered as one unit and either runs to

completion or is not executed at all. It involves the following two operations.

—Abort: If a transaction aborts, changes made to the database are not visible.
—Commit: If a transaction commits, changes made are visible.

Atomicity is also known as the ‘All or nothing rule’.

Before: X : 500 Y: 200
Transaction T
T1 T2
Read (X) Read (Y)
X:=X—100 Y:=Y+ 100
Write (X) Write (Y)
After: X : 400 Y :300

Consistency:

» This means that integrity constraints must be maintained so that the database
is consistent before and after the transaction. It refers to the correctness of a
database. Referring to the example above,

The total amount before and after the transaction must be maintained.

187

Total before T occurs = 500 + 200 = 700.
Total after T occurs =400 + 300 = 700.

Therefore, the database is consistent. Inconsistency occurs in case T1l completes

but T2 fails. As a result, T is incomplete.

Isolation: The term ‘isolation’ means separation. In DBMS, Isolation is the property of
a database where no data should affect the other one and may occur concurrently. In
short, the operation on one database should begin when the operation on the first
database gets complete. It means if two operations are being performed on two different
databases, they may not affect the value of one another. In the case of transactions,
when two or more transactions occur simultaneously, the consistency should remain
maintained. Any changes that occur in any particular transaction will not be seen by

other transactions until the change is not committed in the memory.

- l wWalwe read by B before | =
T wras 5100
Bafora s 100) _
Debhit o B = 20 %elure = S0
B il e bl = B Ciredit by A 5 20
> Debit to = s 20 T A ailablie £ TO
Ao ailable 5 S0
Saluwe resasd
by O befors B
T= was S80 =
-
Baefora s TO
Credit by & 5 Z20
Aovrailalbxle 5 90

Isolation - Independent execution of T+ & T= by A

Durability: Durability ensures the permanency of something. In DBMS, the term
durability ensures that the data after the successful execution of the operation becomes
permanent in the database. The durability of the data should be so perfect that even if

the system fails or leads to a crash, the database still survives.

* Using a MySQL Database:

system@system-virtual-machine:~/Riyaz$ sudo apt update
+ system@system-virtual-machine:~/Riyaz$ sudo apt install postgresq|
postgresql-contrib
system@system-virtual-machine:~/Riyaz$ sudo —i -u postgres
sudo] password for system:

postgres@system-virtual-machine:~$ psql
188

psql (14.5 (Ubuntu 14.5-Oubuntu0.22.04.1))

Type "help” for help.

The mysql commands:

The mysql program uses two different types of commands:

m Special mysql commands
m Standard SQL statements

The mysqgl program uses its own set of commands that let you easily control the
environment and retrieve information about the MySQL server. The mysqgl commands
use either a full name (such as status) or a shortcut (such as \s).
mysql> \s
mysql Ver 14.14 Distrib 5.5.38, for debian-linux-gnu (i686) using readline 6.3

Connection id:
Current database:

Current user: root@localhost

SSL: Not in use

Current pager: stdout

Using outfile: "

Using delimiter: ;

Server version: 5.5.38-0ubuntu0.14.04.1 (Ubuntu)
Protocol version: 10

Connection: Localhost via UNIX socket

Server characterset: latinl

Db characterset: latinl

Client characterset: utf8

Conn. characterset: utf8

UNIX socket: /var/run/mysqld/mysqgld.sock
Uptime: 2 min 24 sec

Threads: 1 Questions: 575 Slow queries: 0 Opens: 421 Flush tables: 1
Open tables: 41 Queries per second avg: 3.993

189

fommmmmmmmmmmao -
| Database |
e -
| information schema |
| mysql |
fommmmmmmmmmmaoe -

2 rows 1n set (0.04 sec)

mysgl> USE mysqgl;
Database changed
mysql> SHOW TAELES;

| columns priv
| db

| func

| help category
| help keyword
| help relatieon

| host

| proc

| procs priv

| tables priv

| time zone

| time zone leap second

| time zone name

| time zone transition

| time zone transition type
| user

17 rows in set (0.00 sec)
mysqgl>

190

« Creating a database:
The MySQL server organizes data into databases. A database usually holds
the data for a single application, separating it from other applications that use

the database server.

« Creating a separate database for each shell script application helps eliminate
confusion and data mix-ups.
Here's the SQL statement required to create a new database:
CREATE DATABASE name,;

« mysql> CREATE DATABASE mytest;
Query OK, 1 row affected (0.02 sec)

mysgl> SHOW DATABASES;

fmmmmmmssscssscsaaaaa +
| Database |
fmmmmmmssscssscsaaaaa +
| information schema |
| mysgl |
| mytest |
fmmmmmmssscssscsaaaaa +

1 rows in set (0.01 sec)

Creating a table

The MySQL server is considered a relational database. In a relational database, data is
organized by data fields, records, and tables. A data field is a single piece of information,
such as an employee’s last name or a salary. A record is a collection of related data
fields, such as the employee ID number, last name, first name, address, and salary.

Each record indicates one set of the data fields.

191

mysql> CREATE TABLE employees |
-> empid int not null,
-> lastname varchar(30),
-> firstname varchar(30),
-> galary float,
-> primary key (empid));
Query OK, 0 rows affected (0.14 sec)

TABLE 251 MySQL Data Types

Data Type Description

char Afixed-length string value

varchar A variable-length string value

int An integer value

float Afloating-point value

boolean A Boolean true/false value

date A date value in YYYY-MM-DD format
time A time value in HH:mm:ss format
timestamp A date and time value together

text A long string value

BLOB A large binary value, such as an image or video clip

» The empid data field also specifies a data constraint. A data constraint restricts
what type of data you can enter to create a valid record. The not null data
constraint indicates that every record must have an empid value specified.
Finally, the primary key defines a data field that uniquely identifies each individual
record. This means that each data record must have a unique empid value in the
table.

* Inserting and deleting data

« you use the INSERT SQL command to insert new data records into the table.

Each INSERT command must specify the data field values for the MySQL

192

server to accept the record. Here’s the format of the INSERT SQL command:

INSERT INTO table VALUES (...)

mysqgl> INSERT INTO employees VALUES (1, 'Blum', 'Rich’, 25000.00);
Query OK, 1 row affected (0.35 sec)

mysql> INSERT INTO employees VALUES (2, 'Blum’, 'Barbara’, 45000.00);
Query OK, 1 row affected (0.00 sec)
You should now have two data records in your table

Here’s the basic DELETE command format:

DELETE FROM table;

To just specify a single record or a group of records to delete, you must use the
WHERE clause. The WHERE clause allows you to create a filter that identifies

which records to remove. You use the WHERE clause like this:

DELETE FROM employees WHERE empid = 2;

This restricts the deletion process to all the records that have an empid value of
2. When you execute this command, the mysql program returns a message
indicating how many records matched the filter:

mysql> DELETE FROM employees WHERE empid = 2;
Query OK, 1 row affected (0.29 sec)
As expected, only one record matched the filter and was removed.

Querying data

Here’s the basic format of a SELECT statement:
SELECT datafields FROM table

193

mysgl> SELECT * FROM employees;

= ———— === tommmmm—————— t====——-- +
| empid | lastname | firstname | salary |
fommm——— fommmmm———— s el tommmm——- +
1	Blum	Rich	25000
2	Blum	Barbara	45000
3	Blum	Katie Jane	34500
4	Blum	Jessica	52340
o temmmm————— tommmm——————— === +

4 rows in set (0.00 sec)

You can use one or more modifiers to define how the database server returns the data

requested by the query. Here’s a list of commonly used modifiers:
m WHERE: Displays a subset of records that meet a specific condition
m ORDER BY: Displays records in a specified order

m LIMIT: Displays only a subset of records

* Sending commands to the server After establishing the connection to the
server, you'll want to send commands to interact with your database. There are

two methods to do this:

+ m Send a single command and exit.

m Send multiple commands.

To send a single command, you must include the command as part of the mysq|
command line. For the mysgl command, you do this using the -e parameter:

$ cat mtestl

#!/bin/bash

send a command to the MySQL server

MY SQL=$(which mysq]l)

$MYSQL mytest -u test -e 'select * from employees'

194

& ./mtestl

To redirect lines in the shell script, you must define an end of file string. The end of file

----- e e e S
| lastname | firstname | salary |
temmmsmssaa= $emmmmsmsmssaa- temmmmm=aa +
1 | Blum | Rich | 25000 |
2 | Blum | Barbara | 45000 |
3 | Blum | Katie Jane | 34500 |
4 | Blum | Jessica | 52340 |

frmmmmmmm——— fmmmmmmm————- tmmmm————— +

If you need to send more than one SQL command, you can use file redirection

string indicates the beginning and end of the redirected data.

This is an example of defining an end of file string, with data in it:

S cat mtest2
#!/bin/bash
sending multiple commands to MySQL

MYSQL=5 (which mysqgl)

SMYSQL mytest -u test <<ECF

show tables;

select * from employees where salary > 40000;

EQF

§ ./mtest?2

Tables in test

employees

empid lastname firstname salary
2 Blum Barbara 45000
4 Blum Jessica 52340
$

Formatting data

The standard output from the mysqgl command doesn’t lend itself to data retrieval.
If you need to actually do something with the data you retrieve, you need to do
some fancy data manipulation. This section describes some of the tricks you can

use to help extract data from your database reports.

The mysqgl program also supports an additional popular format, called Extensible
Markup Language (XML). This language uses HTML-like tags to

195

» identify data names and values. For the mysql program, you do this using the -X

command line parameter:

$ mysql mytest -u test -X -e 'select * from employees where empid = 1'

<7xml version="1.0"7>

cresultset statement="select * from employees"s:
<TOW>
<field names"empid"sle¢/field»
¢field name="lastname">Blume/fields
<field name="firstname">Riche/fields
<field name="salary"»>25000</fields
<frows
</resultsets

3

Using XML, you can easily identify individual rows of data, along with the individual
data values in each record. You can then use standard Linux string handling functions
to extract the data you need!

Using the Web:

« Almost as old as the Internet itself, the Lynx program was created in 1992 by
students at the University of Kansas as a text-based browser. Because it's
text-based, the Lynx program allows you to browse websites directly from a
terminal session, replacing the fancy graphics on web pages with HTML text

tags.

* Lynx uses the standard keyboard keys to navigate around the web page. Links
appear as highlighted text within the web page. Using the right-arrow key

allows you to follow a link to the next web page.
Installing Lynx

« Eventhoughthe Lynx program is somewhat old, it’s still in active development.
At the time of this writing, the latest version of Lynx is version 2.8.8, released

in June 2010, with a new release in development. Because of

196

» its popularity among shell script programmers, many Linux distributions install

the Lynx program in their default installations.
* The lynx command line:

The lynx command line command is extremely versatile in what information
it can retrieve from the remote website. When you view a web page in your browser,
you’re only seeing part of the information that’s transferred to your browser. Web

pages consist of three types of data elements:

m HTTP headers
m Cookies
m HTML content

« HTTP headers provide information about the type of data sent in the
connection, the server sending the data, and the type of security used in the
connection. If you’re sending special types of data, such as video or audio clips,
the server identifies that in the HTTP headers. The Lynx program allows you to

view all the HTTP headers sent within a web page session.

+ If you've done any type of web browsing, no doubt you're familiar with web
page cookies. Websites use cookies to store data about your website visit for
future use. Each individual site can store information, but it can only access the
information it sets. The lynx command provides options for you to view cookies
sent by web servers, as well as reject or accept specific cookies sent from

servers.

* The Lynx program allows you to view the actual HTML content of the web page
in three different formats:
m In a text-graphics display on the terminal session using the curses
graphical library
m As a text file, dumping the raw data from the web page

m As a text file, dumping the raw HTML source code from the web page

197

« The Lynx configuration file

. The lynx command reads a configuration file for many of its parameter
settings. By default, this file is located at /usr/local/lib/lynx.cfg, although you’ll find
that many Linux distributions change this to the /etc directory (/etc/lynx.cfg) (the
Ubuntu distribution places the lynx.cfg file in the /etc/lynx-cur folder). The lynx.cfg
configuration file groups related parameters into sections to make finding

parameters easier. Here's the format of an entry in the configuration file:

+ PARAMETER:value
where PARAMETER is the full name of the parameter (often, but not always in
uppercase letters) and value is the value associated with the parameter.
such as the ACCEPT_ALL_COOKIES parameter,

« The most common configuration parameters that you can’t set on the command
line are for the proxy servers. Some networks (especially corporate networks)
use a proxy server as a middleman between the client’s browser and the

destination website server.

Instead of sending HTTP requests directly to the remote web server, client
browsers must send their requests to the proxy server. The proxy server in turn sends
the requests to the remote web server, retrieves the results, and forwards them back
to the client browser.

Using E-Mail :The main tool you have available for sending e-mail messages from
your shell scripts is the Mailx program. Not only can you use it interactively to read
and send messages, but you can also use the command line parameters to specify

how to send a message.

198

The Mailx program sends the text from the echo command as the message body.
This provides an easy way for you to send messages from your shell scripts. Here’s a

quick example:

S cat factmail
#!/bin/bash
mailing the answer to a factorial

MAIL=S (which mailx)

factorial=1

counter=1

read -p "Enter the number: " value
while [Scounter -le Svalue]

do

factorial=5[5factorial * Scounter]
counter=5 [Scounter + 1]

done

echo The factorial of Svalue 15 Sfactorial \ SMAIL -5 "Factorial
answer' SUSER
echo "The result has been mailed to you."

This script does not assume that the Mailx program is located in the standard
location. It uses the which command to determine just where the mail program is. After
calculating the result of the factorial function, the shell script uses the mail command to
send the message to the user-defined $USER environment variable, which should be

the person executing the script.

199

J— $./factmail

Enter the number: 5
The result has been mailed to you.

§

You just need to check your mail to see if the answer arrived:
5 mail
"fvar/mailfrich": 1 message 1 new

=N 1 Rich Blum Mon Sep 1 10:32 13/586 Factorial answer
7

Return-Path: <rich@rich-Parallels-Virtual-Platform:=

X-0Original-To: rich@rich-Parallels-Virtual-Platform

Delivered-To: rich@rich-Parallels-Virtual-Platform

Received: by rich-Parallels-Virtual-Platform (Postfix, from userid 1000)
id B4A2R260081; Mon, 1 Sep 2014 10:32:24 -0500 (EST)

Subject: Factorial answer

To: erich@rich-Parallels-Virtual-Platforms

¥X-Mailer: mail (GNU Mailutils 2.1}

Message-Id: <20101209153224.B4A2R260081@rich-Parallels-Virtual-Platform=

Date: Mon, 1 Sep 2014 10:32:24 -0500 (EST)

From: rich@rich-Parallels-Virtual-Platform (Rich Blum)

The factorial of 5 is 120

?

5.4 What is Python?

« Python is an object-oriented interpreted language that is designed to be easy to
use and to aid Rapid Application Development. This is achieved by the use of

simplified semantics in the language.

* Python was created at the end of the 1980s, towards the very end of
December 1989, by the Dutch developer Guido van Rossum. The majority of

the design of the language aims for clarity and simplicity

+ If you are using another Linux distribution or Python 3 is not found for any reason,
you can install it like this: On RedHat based distributions: $ sudo yum install

python36 On Debian based distributions:
« $sudo apt-get install python3.6

* We can see that we are presented with >>> the prompt and this is known as the
REPL console. We should emphasize that this is a scripting language and, like
bash and Perl, we will normally execute code through the text files that we create.

Those text files will normally be expected to have a QZ suffix to their name.

* While working with REPL, we can print the version independently by importing
a module.

In Perl, we will use the keyword; in bash we will use the command source; and

200

in Python

we use import:

>>>import sys

With the module loaded, we can now investigate the object-oriented nature of Python by

printing the version:

>>> sys.version

222

>»> import sys
»»>» sys.version
'3.2.3 (default, Mar 1 2013, 11:53:58) \n[GCC 4.6.3]"

We will navigate to the TZT object within our namespace and call the version method

from that object.

Finally, to close the REPL, we will use Ctrl + D in Linux or Ctrl + Z in Windows.

Saying Hello World the Python way:
The Print function includes the newline and we do not need semicolons at the
end of the line. We can

see the edited version of $HOME/bin/hello.py in the following example:

We will still need to add the execute permission, but we can run the code as
earlier using Chmod. This is shown in the following command but we should be
a little used to this now:

$ chmod u+x $HOME/bin/hello.py

Finally, we can now execute the code to see our greeting. Similarly, you can

run the file using the Python interpreter from the command line like this:
$ python3 $HOME/bin/hello.py

Or in some Linux distributions, you can run it like this:
$ python36 $HOME/bin/hello.py

201

Pythonic arguments:

We should know by now that we will want to pass command-line arguments to
Python and we can do this using the BSHW array. However, we are more like
bash; with Python we combine the program name into the array with the other

arguments.

Python also uses lowercase mstead of uppercase in the object name:

* The argv array 1s a part of the sys object

¢ sys.arqu[0] i the script name

* sys.arqu][1] is the first argument supplied to the script
+ sys.argv(2] 15 the second supplied argument and 5o on

¢ The argument count will always be at least 1, so, keep this m mind when
checking for supplied arguments

« Supplying arguments:

If we create the SHOME/bin/args. py file we can see this in action. The file should be
created as follows and made executable:

#!/usr/bin/python3
import sys
print ("Hello " + sys.argv([l])

If we run the script with a supplied argument, we should see something similar to the
following screenshot:

pigpilabs ~/bin § ./args.py fred
Hello fred
pigpllabs ~/bin §

202

« Counting arguments : The script name is the first argument at index of the
array. So, if we try to count the arguments, then the count should always be at

the very least 1.
* In other words, if we have not supplied arguments, the argument count will be

1. To count the items in an array, we can use the len() function.

If we edit the script to include a new line we will see this work, as follows:

$#!/usr/bin/python3

import sys
print ("Hello " + sys.argv(1])
print ("length is: " + str(len(sys.argv)))

Executing the code as we have earlier, we can see that we have supplied two
arguments—the script name and then the string Mokhtar:

likegeekselikegeeks-VirtualBox ~/Desktop - +

File Edit View Search Termunal Help

ikegeeks@likegeeks-VirtualBox ./args.py Mokhtar
Hello Mokhtar

Length 1s: 2
Kegeeks@likegeel

gqee

Significant whitespace:

The indent level of your code defines the block of code to which it belongs. So
far, we have not indented the code we have created past the start of the line. This means

that all of the code is at the same indent level and belongs to the same code block.

Rather than using brace brackets or the do and done keywords to define the
code block, we use indents. If we indent with two or four spaces or even tabs, then we
must stick to those spaces or tabs. When we return to the previous indent level, we

return to the previous code block.

203

#! fusr/bin/pythond

import &ys

count = Len{sys.arqv)

if {count » 1):
print ("Arqunents supplied: " + str(count))
print ("Hello " + sys.arqv(l])

print ("Exiting " + sys.argv(0)])

pLgpLLabs ~/b1n § . Jangs.py
briting . /angs.py

ouep1Labs +/bin § . [args.py fred
Argunents supplied: |

Hello freg

Friting . angs.py

204

Reading user input :

#!/usr/bin/python3

import sys

count = len(sys,argy)
name = '

of (count == 1):

name = input("Enter a name: ")

name = sys.argyv[1]

orint("Hello " + name)
orint("Exiting " + sys.argv[@])

205

e EEEEE——— |
Ikegeeks@lkeqeeks irtualBox ~esktop = +

Flo €t View Search Temial Help
§1 geexs@L1kegeeKs VirtualBo)
Hello Nokhtar

Exlt 1nq [ag8.py

L1Kege rw» oKs«V1rtualBoy

Enter 3 nane: Nokhtar

b ”Q/QDY

goexs@L1keqeeks-VartualBox

t

Hello Mokhta
111
L1K¢

Using Python to write to files :

We will start by making a copy of our existing args.py We will copy this
$HOME/bin/file.py. The new file.py should read similar to the following screenshot and

have the execute permission set:

206

#|/usr/bin/python3
import sys

count = len(sys.argv)
name = "'

{ count == 1):
name = input(“"Enter a name: ")

name = sys.argv([1]

log = open("/tmp/script.log”,"a")
log.write("Hello " + name + "\n")
log.close()

String manipulation:

Dealing with strings in Python is very simple: you can search, replace, change character case,

and perform other manipulations with ease: To search for a string, you can use the find method
like this:

§!/usr/bin/python3
str = "Welcome to Python scripting world"
print (str.find("scripting"))

File Edit View Search Terminal Help

likegeeks@likegeeks ./string-manipulation@l.py

1
likegeeks@likeaeek H ‘

The string count in Python starts from zero too, so the position of the word scripting s at
18.

207

— You can get a specific substring using square brackets like this:

#!/usr/bin/python3

str = "Welcome to Python scripting world"

print (str[:2]) # Get the first 2 letters (zero based)

print (str[2:]) # Start from the second letter

print (str[3:5]) # from the third to fifth letter

print (str[-1]) # -1 means the last letter if you don't know the length

File Edit View Search Terminal Help

./string-manipulation®2.py

lﬂas‘m‘vr':-“ii' i'*’-'}*»'--‘
We
Lcome to Python scripting world

co

d

.\1}\[%1[:_‘.” 1K¢ jeel D

To replace a string, you can use the replace method like this:

#!/usr/bin/python3

str = "Welcome to Python scripting world"
str2 = str.replace("Python", "Shell")
print (str2)

File Edit View Search Terminal Help
likegeeks@likegeek: ./string-manipulation@3.py

Welcome to Shell scripting world -

likegeeks@likegeeks

oshoxes@oshoxes ~/Desktop - + X

File Edit View Search Terminal Help
)ishoxes@osbhoxes ./hello.py
WELCOME TO PYTHON SCRIPTING WORLD

welcome to python scripting world

osboxes@osboxes

208

Producing Scripts for Database, Web, and E-Mail: Writing database shell scripts-

Using the Internet from your scripts-Emailing reports from scripts

Using Python as a Bash Scripting Alternative: Technical requirements-Python
Language-Hello World the Python way-Pythonic arguments-Supplying arguments-
Counting arguments-Significant whitespace-Reading user input-Using Python to write

to files-String manipulation.

Unit Summary

This chapter walked through how to use some advanced features within your shell
scripts. First, we discussed how to use the MySQL server to store persistent data for
your applica- tions. Just create a database and unique user account in MySQL for your
application, and grant the user account privileges to only that database. You can then
create tables to store the data that your application uses. The shell script uses the mysq|
command line tool to interface with the MySQL server, submit SELECT queries, and
retrieve the results to display. Next we discussed how to use the lynxtext-based browser
to extract data from websites on the Internet. The lynx tool can dump all the text from a
web page, and you can use stan-dard shell programming skills to store that data and
search it for the content you're look- ing for. Finally, we walked through how to use the
standard Mailx program to send reports using the Linux e-mail server installed on your
Linux system. The Mailx program allows you to easily send output from commands to

any e-mail address.

Let us sum up

The shell script uses the mysqgl command line tool to interface with the MySQL

server, submit SELECT queries, and retrieve the results to display.

A major difference between Python and most other languages is that additional
whitespace can mean something. The indent level of your code defines the
block of code to which it belongs.

209

Check your progress

1. What is a primary advantage of using the dash shell over the bash shell?*
A) More features B) Faster and smaller

C) Easier syntax D) Better support for scripting

2. Which of the following is a characteristic of the dash shell?*

A) It supports advanced scripting features.

B) It is a non-POSIX-compliant shell.
C) It is optimized for speed and low memory usage.

D) It is the default shell on all Linux distributions.

3. What makes the zsh shell stand out compared to bash and dash?*
A) It is simpler than both.

B) It combines features from bash, ksh, and tcsh.

C) It is the smallest shell available.

D) It has no scripting capabilities.

4. Which of the following is a feature of zsh scripting?*
A) Limited compatibility with other shells.

B) Built-in support for floating-point arithmetic.

C) Only supports basic scripting features.

D) No support for arrays.

5. Which command is commonly used in shell scripts to create backups?*

A) cp B) rm C) mv D) du

210

6. Which command would you use in a script to add a new user in Linux?*

A) usermod B) useradd C) passwd D) chmod

7. What command can be used to check disk space usage in a script?*
A)ls B) df C) du D) ps

8. Which command can be used to connect to a MySQL database from a shell

script?*

A) mysql B) dbconnect C) sqlconnect D)
connectdb

9. Which command can be used to download a file from the internet in a shell

script?*

A) getfile B) wget C) fetch D) netget

10. Which command is commonly used to send emails from a shell script?*

A) mall B) sendemaill C) sendmaill D) netmail

11. Which Python version introduced significant changes in syntax and features

over the previous version?*

A) Python 2.7 B) Python 1.6 C) Python 3.0 D) Python
3.9

12. What is the correct file extension for Python scripts?*

A) .bash B) .py C) .sh D) .pyscript

211

13. What is the correct Python syntax to print "Hello World"?*
A) echo "Hello World" B) print "Hello World"

C) printf("Hello World") D) print("Hello World")

14. Which module in Python is commonly used for parsing command-line

arguments?*
A) sys B) argparse C) getopt D) os
15. Which symbol is used to denote comments in Python?*
A) # B) // C) I**l D) <!-- -->

16. Which function is used to get number of command-line arguments in
Python?*

A) len(argv) B) argc C) len(sys.argv) D) argc(sys.argv)

17. What is the significance of whitespace in Python?*
A) Itis ignored. B) It separates commands.

C) It is used to denote blocks of code. D) It only matters in strings.

18. Which function is used to read input from the user in Python?*

A) read() B) input() C) get() D) scanf()

19. Which mode is used to open a file for writing in Python?*

A) "r" B) "rw" C) "w" D) "a"

20. Which method is used to convert a string to uppercase in Python?*

A) upper() B) toUpperCase() C) to_upper() D) upcase()

212

Here are the answers:

1.8) 2.C) 3.B) 4B) 5A) 6.B) 7.B) 8A) 9.B) 10.C) 11.B)
12.B) 13.D) 14.B) 15A) 16.C) 17.C) 18.B) 19.C) 20.A)

Self Assesment Questions :

1. How dash shell is different from bash shell?

2. Summarize the basic features of Linux.

3. Compare dash shell and z-shell in advanced shell scripting.

4. Bash scripting using python in advanced shell scripting.

5. Write a shell script program to demonstrate to connect a PostgreSQL
database and performing CRUD operations.

6. Give some example using python as a bash scripting.

Open source e-content links

1. Richard Blum, Christine Bresnahan, —Linux Command Line and Shell
Scripting BIBLEI, Wiley Publishing, 3rd Edition, 2015.Chapters: 3, 11 to
14, 16 to 25.

2. Mokhtar Ebrahim, Andrew Mallett, —Mastering Linux Shell Scriptingll,
Packt Publishing, 2nd Edition, 2018. Chapter: 14.
https://www.javatpoint.com/linux-shell

https://lyoutube.com/playlist?list=PLS1QulWo1RlaAsfcLW-Jk-
Cx3JGRP8tjh&si=irjoFN25pPTosRX _

Glossary

python or python3: Invokes the Python interpreter.

Usage: python [options] [script] [args...]

213

python -m: Run a Python module as a script.

Usage: python -m module [args...]

Examples: python -m http.server (start a simple HTTP server)

python -c: Execute a Python command passed as a string.

Usage: python -c ‘command’

Example: python -c 'print("Hello, World!")'

python -i: Start an interactive interpreter session after running a script.
Usage: python -i script.py

str.replace(): Replaces substrings in a string.

Usage: new_string = original_string.replace(‘old’, 'new’)

str.split(): Splits a string into a list.

Usage: list_of_strings = string.split(‘delimiter’)

str.join(): Joins a list of strings into a single string.

Usage: joined_string = delimiter.join(list_of_strings)
str.strip(): Removes leading and trailing whitespace.

Usage: clean_string = string.strip()

e-books

1.Python for Unix and Linux System Administration by Noah Gift and Jeremy M.
Jones
2. "Linux Shell Scripting with Bash" by Ken O. Burtch

214

