
1 Periyar University – CDOE| Self-Learning Material

PERIYAR UNIVERSITY

(NAAC 'A++' Grade with CGPA 3.61 (Cycle - 3)

State University - NIRF Rank 56 - State Public University Rank 25

SALEM - 636 011

CENTRE FOR DISTANCE AND ONLINE EDUCATION

(CDOE)

MASTER OF COMPUTER APPLICATIONS

SEMESTER - I

CORE – I: LINUX AND SHELL PROGRAMMING

(Candidates admitted from 2024 onwards)

2 Periyar University – CDOE| Self-Learning Material

3 Periyar University – CDOE| Self-Learning Material

PERIYAR UNIVERSITY

CENTRE FOR DISTANCE AND ONLINE EDUCATION (CDOE)

MCA 2024 admission onwards

Core Course – I

LINUX AND SHELL PROGRAMMING

Prepared by:

 Centre for Distance and Online Education (CDOE)

 Periyar University

 Salem - 636011.

4 Periyar University – CDOE| Self-Learning Material

LIST OF CONTENTS

UNIT CONTENTS PAGE

1 Basic bash Shell Commands: Interacting with the shell-
Traversing the file system-Listing files and directories-Managing
files and directories-Viewing file contents.

Basic Script Building: Using multiple commands-Creating a
script file-Displaying messages- Using variables-Redirecting input
and output-Pipes-Performing math-Exiting the script.

Using Structured Commands: Working with the if-then
statement-Nesting ifs-Understanding the test command-Testing
compound conditions-Using double brackets and parentheses-
Looking at case.

7

2 More Structured Commands: Looping with for statement-
Iterating with the until statement- Using the while statement-
Combining loops-Redirecting loop output.

Handling User Input: Passing parameters-Tracking
parameters-Being shifty-Working with options-Standardizing
options-Getting user input.

Script Control: Handling signals-Running scripts in the
background-Forbidding hang-ups - Controlling a Job-Modifying
script priority-Automating script execution.

45

3 Creating Functions: Basic script functions-Returning a value-
Using variables in functions- Array and variable functions-
Function recursion-Creating a library-Using functions on the
command line.

Writing Scripts for Graphical Desktops: Creating text menus-
Building text window widgets- Adding X Window graphics.

Introducing Sed and Gawk: Learning about the sed Editor-
Getting introduced to the gawk Editor-Exploring sed Editor basics.

97

4 Regular Expressions: Defining regular expressions-Looking at
the basics-Extending our patterns-Creating expressions.

Advanced Sed: Using multiline commands-Understanding the
hold space-Negating a command- Changing the flow-Replacing via
a pattern-Using sed in scripts-Creating sed utilities.

Advanced gawk: Reexamining gawk-Using variables in gawk-
Using structured commands- Formatting the printing-Working with
functions.

129

5 Working with Alternative Shells: Understanding the dash shell-
Programming in the dash shell- Introducing the zsh shell-Writing
scripts for zsh.

Writing Simple Script Utilities: Automating backups-Managing
user accounts-Watching disk space

165

5 Periyar University – CDOE| Self-Learning Material

Producing Scripts for Database, Web, and E-Mail: Writing
database shell scripts-Using the Internet from your scripts-
Emailing reports from scripts

Using Python as a Bash Scripting Alternative: Technical
requirements-Python Language- Hello World the Python way -
Pythonic arguments-Supplying arguments-Counting arguments-
Significant whitespace-Reading user input-Using Python to write to
files-String manipulation.

6 Periyar University – CDOE| Self-Learning Material

UNIT CONTENTS PAGE

1.1

1.2

1.3

Basic bash Shell Commands

Basic Script

Using Structured Commands

7

14

29

2.1

2.2

2.3

More Structured Commands

Handling User Input

Script Control

45

57

78

3.1

3.2

3.3

Creating Functions

Writing Scripts for Graphical Desktops

Introducing Sed and Gawk

97

107

112

4.1

4.2

4.3

Regular Expressions

Advanced Sed

Advanced gawk.

129

140

148

5.1

5.2

5.3

5.4

Working with Alternative Shells

Writing Simple Script Utilities

Producing Scripts for Database, Web, and E-Mail

Using Python as a Bash Scripting Alternative

165

176

188

202

7 Periyar University – CDOE| Self-Learning Material

Unit – I

Objectives :

 Understand what a shell is and the role of Bash in Unix-like operating

systems.

 Learn and practice basic Bash commands and navigation techniques.

 Automate script execution and schedule tasks using cron jobs.

1.1Basic bash Shell Commands

Starting the Shell:

● The default shell in many Linux distributions is the GNU bash shell.

● The shell is a program that provides interactive access to the Linux system

and is typically started when a user logs in to a terminal.

● The shell used depends on the user's configuration, as specified in the

`/etc/passwd` file. The last field in each entry of this file specifies the user's

default shell program.

Using the Shell Prompt:

● After starting a terminal or logging into a Linux virtual console, you get access

to the shell command-line interface (CLI) prompt.

● The default prompt symbol for the bash shell is the dollar sign ($), which

indicates that the shell is ready to accept your commands.

● The prompt can also display additional information, such as the current user's

name and the system's name, which can be customized.

● When you enter a shell command at the prompt, you need to press the Enter

key for the shell to execute the command.

8 Periyar University – CDOE| Self-Learning Material

Modifying the Shell Prompt:

● The shell prompt is not static and can be customized to suit your preferences.

Interacting with the shell

Interacting with the bash Manual:

● Most Linux distributions include an online manual for looking up information

on shell commands and GNU utilities. The `man` command provides access

to the manual pages stored on the Linux system. You can use it by entering

`man` followed by a specific command name to access that utility's manual

entry.

● Manual pages are displayed with a pager that allows you to navigate through

them using spacebar, Enter key, or arrow keys.

● To exit the manual pages and return to the shell prompt, press the `q` key.

● The `man` command can be used to view manual pages about itself by typing

`man man`.

Sections in Manual Pages:

● The manual pages are divided into separate sections, each with a

conventional naming standard. These sections provide information about a

command's name, syntax, configuration, description, options, and more. Not

all commands have all the listed sections, and some may have additional

sections.

Searching for Commands:

● If you can't remember the command name, you can search the manual pages

using keywords with the syntax `man -k keyword`. For example, to find

commands related to terminals, you can use `man -k terminal`.

9 Periyar University – CDOE| Self-Learning Material

Section Areas:

● Manual pages are organized into section areas, each with an assigned

number. The lowest numbered section is typically provided for a command.

For example, (1) indicates executable programs or shell commands, while (7)

is for overviews, conventions, and miscellaneous.

Additional Resources:

● In addition to `man` pages, there are also information pages called "info"

pages. Most commands accept the `-help` or `--help` option for quick help.

Several resources are available for reference, but detailed explanations may

be needed for basic shell concepts.

Traversing the file system

Traversing Directories:

● The `cd` (change directory) command is used to navigate within the Linux

filesystem. Its syntax is straightforward: `cd destination`. If no destination is

specified, it takes you to your home directory.

● Using Absolute Directory References: Absolute directory references start

from the root directory and are represented by a forward slash (/). For

example, `cd /usr/bin` takes you to the `/usr/bin` directory.

● Using Relative Directory References: Relative references specify a

destination relative to your current location and do not start with a forward

slash (/). You can use directory names or special characters like `..` (parent

directory). For instance, `cd Documents` moves to the `Documents` directory

from your home directory.

Special Characters for Relative References:

● `.` represents the current directory.

● `..` represents the parent directory and is useful for moving up the directory

10 Periyar University – CDOE| Self-Learning Material

hierarchy.

● Remember to use absolute references when you're new to the command line

and the Linux directory structure. As you become more familiar, you can

switch to relative references.

● You can also display your current directory with the ̀ pwd` command, ensuring

you're in the right location before executing commands. Using relative

references is especially useful within your home directory.

Listing files and directories

Listing Files and Directories:

● To view files on the system, use the `ls` (list) command. It can display basic

or detailed information about files and directories. You can also filter listings

based on names or patterns.

Displaying a Basic Listing:

● The basic `ls` command shows files and directories in your current directory.

By default, it lists non-hidden directories alphabetically.

● Example:

```shell 

$ ls 

Desktop Downloads Music Pictures Templates Videos 

Documents examples.desktop my_script Public test_file 

``` 

● You can use `-F` to flag directories with a slash and executables with an

asterisk for easy identification.

● Hidden files (those starting with a dot) are not displayed by default. To show

them, use `-a`.

● The `-R` option displays files in subdirectories as well.

11 Periyar University – CDOE| Self-Learning Material

Displaying a Long Listing:

● For more detailed information about each file or directory, use the `-l` option

with `ls`. It provides data like file type, permissions, owner, group, size, and

modification time.

Filtering Listing Output:

● You can filter listings using text-matching strings and standard wildcard

characters.

● `?` matches a single character, and `*` matches any number of characters.

● Example:

```shell 

$ ls -l my_script 

-rwxrw-r-- 1 christine christine 54 May 21 11:26 my_script 

``` 

 File globbing, using brackets `[]`, allows for more advanced filtering. You

can specify choices or character ranges.

● Example:

```shell 

$ ls -l f[ai]ll 

-rw-rw-r-- 1 christine christine 0 May 21 13:44 fall 

-rw-rw-r-- 1 christine christine 0 May 21 13:44 fill 

``` 

● Use `!` to exclude specific patterns from the filter.

● File globbing is a powerful feature for searching files and can be used with

other shell commands as well.

12 Periyar University – CDOE| Self-Learning Material

Managing files and directories

● The key points regarding managing files and directories, specifically creating

files, copying files, handling file links, renaming files, creating directories, and

deleting directories. Here's a concise summary:

Creating Files:

● You can create an empty file using the ̀ touch` command, and you can specify

the file name.

● The `touch` command can also be used to update the modification and

access times of a file.

Copying Files:

● The `cp` command is used to copy files.

● The basic syntax of `cp` is `cp source destination`.

● Use the `-i` option to prompt for confirmation when overwriting files.

● You can copy files to pre-existing directories or specify a different file name.

Handling File Links:

● Linux supports two types of file links: symbolic links and hard links.

● Symbolic links are separate files that point to another file's location.

● Hard links refer to the same physical file in different locations.

● Symbolic links can span different physical media, while hard links cannot.

● You can use the `ln` command to create links.

Renaming Files:

● To rename a file, use the `mv` command, specifying the old and new names.

● The `mv` command can also move files to different directories.

● It preserves the file's content and attributes.

Creating Directories:

● - Use the `mkdir` command to create new directories.

13 Periyar University – CDOE| Self-Learning Material

● - You can create multiple nested directories at once using the `-p` option.

Deleting Directories:

● To remove an empty directory, use the `rmdir` command.

● For directories with content, you can use `rm -r` to recursively remove them.

● Be cautious when using `rm -r`, as it can't be undone.

● This summary provides a quick overview of the key concepts related to

file and directory management in a Linux shell.

Viewing File Contents

Viewing the File Type

● Use the `file` command to determine the type of a file.

● It can identify text files, directories, symbolic links, scripts, and binary

executable programs.

Viewing the Whole File

● To display the entire contents of a text file, use the `cat` command.

● You can use parameters like `-n` to number lines, `-b` to number lines with

text, and

`-T` to replace tabs with `^I`.

Using the `more` Command

● The `more` command displays a text file one page at a time.

● Use the spacebar to navigate pages and `q` to quit.

Using the `less` Command

● `less` is an advanced version of `more`, offering features like searching and

navigation.

14 Periyar University – CDOE| Self-Learning Material

● It recognizes arrow keys and Page Up/Page Down keys.

● It can display a file's contents before reading the entire file.

Viewing Parts of a File

● Use the `tail` command to view the last lines of a file.

● Use `-n` to specify the number of lines, and `-f` to monitor the file in real-time.

● Use the `head` command to view the first lines of a file.

● Both commands help when you need to focus on specific parts of a file.

1.2 Basic Script Building

Using multiple commands

● The ability to run multiple commands and chain them together in a single step

is a fundamental aspect of shell scripting. While using semicolons to separate

commands is useful for small tasks or one-off operations, creating a shell

script by combining multiple commands into a text file offers more

convenience and flexibility.

● Here's how you can create a shell script to achieve the same result as the

example you provided:

● 1. Open a text editor (e.g., `nano`, `vim`, `gedit`, or any other text editor of

your choice).

● 2. Create a new text file and enter the following content:

```bash #!/bin/bash 

# This is a simple shell script 

# Run the 'date' command and display the current date and time date 

# Run the 'who' command to display the list of logged-in 

users who 

``` 

● In this script, `#!/bin/bash` is called a shebang, which specifies that the script

should be executed using the Bash shell.

15 Periyar University – CDOE| Self-Learning Material

● 3. Save the file with a ".sh" extension, for example, "my_script.sh."

● 4. Make the script executable by running the following command in your

terminal:

```bash 

chmod +x my_script.sh 

``` 

● Now, you can run the script by simply typing:


```bash 

./my_script.sh 

``` 

● The script will execute both the `date` and `who` commands, just like the

example you provided. However, the advantage of using a script is that you

don't need to manually type the commands every time you want to run them.

You can edit and reuse the script as needed.

● In a more complex script, you can include variables, conditionals, loops, and

functions to create powerful automation and process automation tasks. Shell

scripting is a versatile way to perform various system tasks and automate

repetitive actions.

Creating a script file

● Creating and running a shell script involves several steps, as you've

described. Here's a summarized version for study material:

Create a Shell Script:

● Use a text editor to create a new file for your shell script. Start with a

16 Periyar University – CDOE| Self-Learning Material

shebang line to specify the shell you're using. For example:

```bash 

#!/bin/b

ash 

``` 

● You can add comments to describe the purpose of the script.

Add Commands:

● Enter your desired shell commands, one per line, in the script file. For

example:

```bash 

# This script displays the date and who's logged 

on date 

who 

``` 

Save the Script:

● Save the script with a ".sh" extension, for example, "my_script.sh."

Make it Executable:

● Use the `chmod` command to make the script executable:


```bash 

chmod +x my_script.sh 

``` 


17 Periyar University – CDOE| Self-Learning Material

Run the Script:

● To execute the script, run it using `./` followed by the script filename:

```bash 

./my_script.sh 

``` 

Permissions Issues:

● If you encounter a "Permission denied" error, change the file's

permissions using

`chmod` to give the owner execute permissions:


```bash 

chmod u+x my_script.sh 

``` 

Run the Script Again:

● Run the script again:


```bash 

./my_script.sh 

``` 

● shell script is now ready and can be executed whenever needed. Comments

in the script help you understand the script's purpose and functionality,

making it easier to maintain and modify the script in the future.

Displaying messages

● In shell scripting, you can use the `echo` command to display messages and

output text to the console. Here's a summary of using `echo` for displaying

messages in your shell scripts:

18 Periyar University – CDOE| Self-Learning Material

Basic Usage:

● You can use the `echo` command to display a simple text string. For example:

```bash 

echo This is a test 

``` 

● The output will be:

``` 

This is a test 

``` 

Handling Quotes:

● When using quotes within your string, you should use the opposite type of

quote to delimit the string. For example:

```bash 

echo "Let's see if this'll work" 

``` 

● The output will be:

``` 

Let's see if this'll work 

``` 

● You can use either double quotes `"` or single quotes `'` to delimit your text

strings.

19 Periyar University – CDOE| Self-Learning Material

Adding Messages to Shell Scripts:

● You can incorporate `echo` statements into your shell scripts to provide

informative messages to users or to describe the script's actions. For example:


```bash 

#!/bin/bas

h 

# This script displays the date and who's logged 

on echo The time and date are: 

date 

echo "Let's see who's logged into the 

system:" who 

``` 

Displaying Messages on the Same Line as Output:

● To display a message on the same line as command output, you can use the

`-n` option with `echo`. For example:

```bash 

echo -n "The time and date are: " 

``` 

● This ensures that the echoed string and the command output are on the same

line.

● The output will be:

``` 

The time and date are: Mon Feb 21 15:42:23 EST 2014 

``` 

● Using the `echo` command allows you to provide information, status updates, or error

messages within your shell scripts, making them more user-friendly and informative.

It is a valuable tool for interaction between scripts and users.

20 Periyar University – CDOE| Self-Learning Material

Using variables

● Using variables in shell scripts is a powerful way to store and manipulate data.

Here's a concise summary of how to use variables in your shell scripts:

Environment Variables:

● Environment variables are system-wide variables that store information like the

username, home directory, and search paths. You can access them in your

scripts using the `$` symbol. For example:

```bash 

echo "User info for userid: 

$USER" echo UID: $UID 

echo HOME: $HOME 

``` 

User Variables:

● You can create your own variables within your shell scripts. These user

variables can hold values and are case-sensitive. Assign values to user

variables using the equal sign `=` without any spaces. For example:

```bash 

days=10 

guest="Kati

e" 

``` 

Referencing Variables:

● When referencing the value of a variable, use the dollar sign `$`. For example:


```bash 

echo "The time and date are: $date" 

``` 


21 Periyar University – CDOE| Self-Learning Material

Command Substitution:

● You can assign the output of a command to a variable using command

substitution. This is done using backticks (\`) or the `$()` format. For example:

```bash 

today=$(date +%y%m%d) 

``` 

● The `date` command's output is assigned to the variable `today`.

Subshells:

● Command substitution creates a subshell to run the enclosed command.

Variables defined in your script are not available in subshells. Be aware of this

when working with subshells.

● Using variables allows you to store, manipulate, and display data within your

shell scripts, making them more versatile and useful for various tasks.

Redirecting input and output

● In shell scripting, you can redirect input and output to and from files using

specific operators. Here's a concise summary of input and output redirection in

shell scripts:

Output Redirection:

● The `>` symbol is used for output redirection. It allows you to save the

output of a command to a file.

● For example, to save the output of the `date` command to a file named

`output.txt`:

```bash 

date > output.txt 

``` 

● If the file already exists, using `>` will overwrite its content.

● To append output to an existing file, use `>>`:

```bash 



22   Periyar University – CDOE| Self-Learning Material 

 

who >> output.txt 

``` 

Input Redirection:

● The `<` symbol is used for input redirection. It allows you to provide

input to a command from a file.

● For example, to count lines, words, and bytes in a file named `input.txt`

using the

`wc` command:

```bash 

wc < input.txt 

``` 

Inline Input Redirection:

● The `<<` symbol allows you to provide data directly on the command line.

● You must specify a text marker (often referred to as a "here document") to

indicate the beginning and end of the data.

● For example, counting lines, words, and bytes using `wc` with inline input

redirection:


```bash 

wc << EOF 

Line 1 

Line 2 

Line 

3 

EOF 

``` 

● The data entry continues until you enter the specified text marker ("EOF" in this

23 Periyar University – CDOE| Self-Learning Material

case).

● Output and input redirection are valuable techniques for manipulating data

within your shell scripts, and they are often used for logging, processing large

data sets, and interacting with external files.

Pipes

● In shell scripting, piping allows you to send the output of one command as input

to another command. Piping is a powerful and efficient way to perform complex

operations by chaining commands together. Here's a brief overview of piping in

shell scripts:

Piping Symbol:

● The piping symbol is represented by `|`, which is often referred to as a "pipe."

Piping Syntax:

● To pipe the output of ̀ command1` to the input of ̀ command2`, use the following

syntax:

```bash 

command1 | command2 

``` 

● The output from `command1` is immediately passed as input to `command2`.

Example:

● In the provided example, the output of the `rpm -qa` command (which lists

installed packages) is piped to the ̀ sort` command to sort the list alphabetically:

```bash 

rpm -qa | sort 

``` 

● The sorted list is displayed in real-time, with no intermediate files or buffers.

24 Periyar University – CDOE| Self-Learning Material

Chaining Pipes:

● You can chain multiple commands together using pipes. For example:


```bash 

command1 | command2 | command3 

``` 


 Periyar University – CDOE| Self-Learning Material

25

● In this case, the output from ̀ command1` is passed to ̀ command2`, and the output

from `command2` is passed to `command3`.

Pausing Output:

● When the output is too long to read at once, you can use text-paging commands

like

`more` to pause and read the data screen by screen:

```bash 

command1 | command2 | more 

`` 

● This allows you to control the flow of data for easier reading. 

 

Saving Output to a File: 

● You can combine piping with output redirection to save the final output to a file. 

For example: 

```bash 

command1 | command2 > output.txt

``` 

● This sends the output of `command1 | command2` to a file called `output.txt`. 

● Piping is a fundamental concept in shell scripting and is widely used to process 

data and execute complex tasks efficiently. 

 

 

 

 

 

 



 

 Periyar University – CDOE| Self-Learning Material 
 

26 

Performing math 

● Performing mathematical operations in shell scripts can be accomplished using 

various methods. In the provided text, three different methods are explained: 

`expr`, using square brackets, and using the `bc` (bash calculator) command for 

floating-point calculations. Here's a summary of each: 

 

`expr` Command: 

● The `expr` command is a basic way to perform integer arithmetic in shell scripts. 

● It recognizes various mathematical and string operators. 

● To use it, you need to escape characters that may be misinterpreted by the shell 

(e.g., `expr 5 \* 2`). 

 

Using Square Brackets: 

● In bash, you can use square brackets to perform integer arithmetic (`$[ operation 

]`). 

● This method simplifies integer arithmetic and doesn't require escaping operators. 

● It's suitable for simple calculations but limited to integer arithmetic. 

 

`bc` (Bash Calculator) for Floating-Point Arithmetic: 

● The `bc` command is a full-featured calculator that supports floating-point 

arithmetic. 

● You can access `bc` from the command line and set the scale (decimal places) for 

results. 

● The `bc` command can be used within shell scripts for more complex arithmetic 

operations. 

● Here's how to use `bc` in shell scripts to perform floating-point arithmetic: 

```bash 

#!/bin/bash

var1=20

var2=3.14159

var3=$(bc << EOF

scale=4

 Periyar University – CDOE| Self-Learning Material

27

result = $var1 * $var2

result

EOF

)

echo The final result is $var3

``` 

● This script sets variables `var1` and `var2` and then uses `bc` with inline input 

redirection to calculate `var1 * var2`. The result is stored in the `var3` variable, 

which is then displayed. `bc` allows you to perform more complex calculations and 

supports floating-point numbers. 

● These three methods provide different options for performing mathematical 

operations in shell scripts, depending on your specific needs, whether it's simple 

integer arithmetic, more advanced integer operations, or floating-point arithmetic. 

Exiting the script 

● In shell scripting, you can gracefully exit a script using the `exit` command and 

specify an exit status code to indicate the script's completion status. The exit status 

is an integer value between 0 and 255 that is returned by the script to the calling 

environment. Here's a summary of how to use the `exit` command: 

 

Checking the Exit Status: 

● You can check the exit status of a command immediately after it has executed 

using the special variable `$?`. A value of 0 typically indicates successful 

completion, while non-zero values often indicate errors. 

 

● Common exit status codes and their meanings are given in Table 11-2 in the 

provided text. 

 

Using the `exit` Command: 

● The `exit` command allows you to set the exit status explicitly when ending a 

script. 



 

 Periyar University – CDOE| Self-Learning Material 
 

28 

● You can specify the desired exit status as a parameter to the `exit` command. 

● This is useful for indicating the outcome of your script and can be helpful when 

your script is used in automated processes. 

● Here's how to use the `exit` command in a script: 

```bash 

#!/bin/bash

Testing the exit status

var1=10

var2=30 var3=$[$var1

+ $var2]

echo The answer is $var3

exit 5

``` 

● In this example, the script will exit with an exit status of 5. When you check the exit 

status using `echo $?`, you'll see the value is 5. 

● Keep in mind that exit status codes should typically be in the 0 to 255 range. If you 

specify a value that exceeds this range, the shell will calculate the modulo 

(remainder) of the value. For example, if you specify an exit status of 300, the 

actual exit status will be 44 (300 modulo 256). It's a good practice to use 

meaningful exit status codes to indicate success or specific types of errors in your 

scripts, making it easier to handle script outcomes in automated workflows. 

 

 

 

1.3 Using Structured Commands 

Working with the if-then statement 

● The ̀ if-then` statement in a Bash script allows you to execute a block of commands 

conditionally based on the exit status of a preceding command. here's how it 

works: 

● The `if` statement begins the conditional block and specifies the command to run. 



 

 Periyar University – CDOE| Self-Learning Material 
 

29 

● The `then` keyword marks the beginning of the commands to be executed if the 

preceding command has a zero exit status (indicating success). 

● The `fi` statement marks the end of the `if-then` block. 

● The `if` statement doesn't evaluate whether a condition is true or false, as it might 

in some other programming languages. Instead, it checks the exit status of the 

command. If the exit status is zero (success), the commands in the `then` block 

are executed. If the exit status is non-zero (failure), the commands in the `then` 

block are skipped. 

● In your script, you can have multiple commands within the `then` block. They are 

treated as a block of code and are executed together if the exit status of the initial 

command in the `if` statement is zero. 

● Additionally, you can use the `else` and `elif` (else if) statements to provide 

alternative actions when the initial command has a non-zero exit status. Here's the 

basic structure: 

 

```bash 

if command1; then

commands to run if command1

succeeds else

commands to run if command1 fails

fi

``` 

● Or, with `elif`: 

```bash 

if command1; then

commands to run if command1

succeeds elif command2; then

commands to run if command1 fails and command2

succeeds else

commands to run if both command1 and command2 fail

 Periyar University – CDOE| Self-Learning Material

30

fi

``` 

● These statements allow you to add more flexibility to your script by specifying 

different actions for various conditions. 

 

Nesting ifs 

● Nesting if-then statements in shell scripting is a common practice to handle 

multiple conditional situations. However, as the example you provided shows, it 

can make the code hard to read and follow, especially when dealing with multiple 

conditions. To address this, you can use `elif` statements to create a cleaner 

and more organized structure for handling different conditions. 

 

● Here's a summary of what the example demonstrates: 

1. The first script checks if a user exists in `/etc/passwd`, and if not, it checks for 

the existence of a directory using nested if-then statements. 

2. The second script improves the code by using `elif` statements instead of 

nesting if-then statements, resulting in cleaner and more readable code. 

3. The third script further enhances the code by adding an `else` block within the 

`elif` block to handle the case where the user doesn't exist and doesn't have a 

directory. 

● The use of `elif` statements makes it easier to handle multiple conditions and 

provides a more structured and readable script. However, as mentioned in the 

text, if you have a large number of conditions, you might want to consider using 

the `case` command for better code organization. 

 

● The `case` command allows you to match a variable against multiple patterns, 

making it a more suitable choice for handling complex conditional logic. It's 

especially helpful when you have a long list of possible values to compare. Here's 

a simplified example of how you can use the ̀ case` command to achieve the same 

outcome as the third script: 

 



 

 Periyar University – CDOE| Self-Learning Material 
 

31 

```bash 

#!/bin/bash

Testing the case command

testuser=NoSuchUser

case $testuser in

$(grep "$testuser" /etc/passwd)

echo "The user $testuser exists on this system."

;;

$(ls -d /home/$testuser 2>/dev/null)

echo "The user $testuser does not exist on this system."

echo "However, $testuser has a directory."

;;

*)

echo "The user $testuser does not exist on this system."

echo "And, $testuser does not have a directory."

;;

esac

``` 

● In this script, the ̀ case` command compares the value of ̀ testuser` against different 

patterns. The `*)` at the end acts as a catch-all for cases that don't match 

the previous patterns. This approach can make your code more maintainable and 

easier to follow when dealing with multiple conditions. 

● If you have a large number of conditions to check, the `case` command is a better 

choice than nesting numerous if-then statements or `elif` blocks. 

Understanding the test command 

● In Bash scripting, you can use conditional statements like `if` to evaluate various 

conditions. To check conditions other than exit status codes of commands, you 



 

 Periyar University – CDOE| Self-Learning Material 
 

32 

can use the `test` command within `if-then` statements. 

 

● The `test` command allows you to assess different conditions. If the condition is 

true, the `test` command exits with a status code of 0, making the `if-then` 

statement behave like those in other programming languages. If the condition is 

false, the `test` command exits with a non-zero status code, causing the `if-then` 

statement to exit. 

●  

● Here's a basic format: 

 

```bash 

if test condition

then

commands

fi

``` 

● You can also use square brackets `[ ]` to define test conditions without the 

`test` command: 

 

```bash 

if [condition]

then

commands

fi

``` 

● The `test` and test conditions can evaluate numeric comparisons, string 

comparisons, and file comparisons. Numeric comparisons involve operators 

like 

`-eq`, `-ge`, `-gt`, `-le`, `-lt`, and `-ne`. String comparisons include `=`, `!=`, `<`, 

`>`, 



 

 Periyar University – CDOE| Self-Learning Material 
 

33 

`-n`, and `-z`. File comparisons check for file attributes, such as `-d`, `-e`, `-f`, `-

r`, 

`-s`, `-w`, `-x`, `-O`, `-G`, `-nt`, and `-ot`. 

● These conditions help you make decisions and control the flow of your Bash 

scripts. 

 

Testing compound conditions 

● The provided shell script demonstrates the use of the AND Boolean operator 

(`&&`) to combine two conditions in an `if-then` statement. Here's a summary of 

what the script does: 

1. It checks if the user's home directory (`$HOME`) exists. 

2. It checks if there's a file named "testing" in the user's home directory 

(`$HOME`) 

and 

● whether the user has write permissions for that file. 

● If both of these conditions are met, the script will print "The file exists and you can 

write to it." Otherwise, it will print "I cannot write to the file." 

● To summarize, the script uses the AND Boolean operator to ensure that both 

conditions must be TRUE for the `then` section to execute. If either of the 

conditions is FALSE, the `else` section will be executed. 

● You can adapt this script as an example of using compound tests with the AND 

operator. It's a common practice to check multiple conditions before performing 

certain actions in shell scripts. 

 

Using double brackets and parentheses 

● The provided information explains two advanced features that you can use in `if-

then` statements in Bash: 



 

 Periyar University – CDOE| Self-Learning Material 
 

34 

Double Parentheses for Mathematical Expressions: 

● You can use double parentheses `((...))` to incorporate advanced mathematical 

expressions in your comparisons. 

● Double parentheses allow for a wide range of mathematical operators and 

expressions, including post-increment, post-decrement, pre-increment, pre-

decrement, logical negation, exponentiation, bitwise shifts, bitwise Boolean 

operations, logical AND, and logical OR. 

 

 

● You can use double parentheses in an `if` statement to perform complex 

mathematical comparisons and assignments. For example: 

```bash 

Example of using double parentheses for mathematical comparisons

val1=10

if (($val1 ** 2 > 90))

then

((val2 = $val1 ** 2))

echo "The square of $val1 is $val2"

fi

``` 

 

Double Brackets for Advanced String Handling and Pattern 

Matching: 

● Double brackets `[[...]]` provide advanced features for string comparisons, 

including pattern matching. 

● You can use double brackets for string comparisons and apply regular expressions 

to match strings. 

● In the example provided, `[[ $USER == r* ]]` is used to match the `$USER` 

environment variable to see if it starts with the letter "r." If it does, the ̀ then` section 



 

 Periyar University – CDOE| Self-Learning Material 
 

35 

is executed. 

```bash 

Example of using double brackets for string comparisons with pattern

matching if [[$USER == r*]]

then

echo "Hello $USER"

else

echo "Sorry, I do not know you"

fi

``` 

● It's important to note that while double brackets work well in the Bash shell, not all 

shells support this feature. Double brackets are particularly useful when you need 

to perform complex string comparisons and pattern matching in your scripts. 

 

Looking at case 

● The ̀ case` command in Bash is a more concise and cleaner way to handle multiple 

conditions for a single variable, as opposed to writing a lengthy `if-then-else` 

statement. Here's a summary of how to use the `case` command: 

 

● Original `if-then-else` example: 

 

```bash 

if [$USER = "rich"]

then

echo "Welcome $USER"

echo "Please enjoy your visit"

 Periyar University – CDOE| Self-Learning Material

36

elif [$USER = "barbara"]

then

echo "Welcome $USER"

echo "Please enjoy your visit"

elif [$USER = "testing"]

then

echo "Special testing account"

elif [$USER = "jessica"]

then

echo "Do not forget to logout when you're done"

else

echo "Sorry, you are not allowed here"

fi

``` 

● Using the `case` command for the same purpose: 

 

```bash 

case $USER in

rich | barbara)

echo "Welcome, $USER"

echo "Please enjoy your visit";;

testing)

echo "Special testing account";;

jessica)

echo "Do not forget to log off when you're done";;

*)

echo "Sorry, you are not allowed here";;

esac

 Periyar University – CDOE| Self-Learning Material

37

``` 

● Key points about the `case` command: 

● It allows you to compare a single variable against different patterns. 

● You can list multiple patterns on the same line using the `|` operator to 

separate them. 

● The `*)` pattern serves as a catch-all for values that don't match any of the 

specified patterns. 

● For each pattern that matches the variable, you can specify the commands to 

execute using `;;`. 

 

● The `case` command provides a more efficient and readable way to handle 

multiple conditions for the same variable, making your scripts cleaner and more 

maintainable. 

 

                        

Unit Summary            

Structured commands allow you to alter the normal flow of shell script execution. The 

most basic structured command is the if-then statement. This statement provides a 

command evaluation and performs other commands based on the evaluated 

command’s output. 

You can expand the if-then statement to include a set of commands the bash shell exe- 

cutes if the specified command fails as well. The if-then-else statement executes 

commands only if the command being evaluated returns a non-zero exit status code. 

You can also link if-then-else statements together, using the elif statement. The elif is 

equivalent to using an else if statement, providing for additional checking of whether 

the original command that was evaluated failed. 

n most scripts, instead of evaluating a command, you’ll want to evaluate a condition, 

such as a numeric value, the contents of a string, or the status of a file or directory. 

The test command provides an easy way for you to evaluate all these conditions. If 

the condition evaluates to a TRUE condition, the test command produces a zero exit 

status code for the if-then statement. If the condition evaluates to a FALSE condition, the 

test command produces a non-zero exit status code for the if-then statement. 



 

 Periyar University – CDOE| Self-Learning Material 
 

38 

 The square bracket is a special bash command that is a synonym for the test command. 

You can enclose a test condition in square brackets in the if-then statement to test for 

numeric, string, and file conditions. 

The double parentheses command provides advanced mathematical evaluations 

using additional operators. The double square bracket command allows you to perform 

advanced string pattern-matching evaluations. 

 

 

Let us sum up: 

The GNU bash shell is a program that provides interactive access to the Linux 

system. It runs as a regular program and is normally started whenever a user logs in 

to a terminal.  

The rmdir has no -i option to ask if you want to remove the directory. This is one reason 

it is helpful that rmdir removes only empty directories.You can also use the rm command 

on entire non-empty directories. 

 

Check your progress 

PART -A 

1. Which command is used to change the current directory in a bash shell?*   

A) cd    B) ls    C) mv    D) pwd 

 

2. What does the command pwd do in a bash shell?**   

A) Changes the password    B) Prints the current working directory   

C) Lists the files in a directory   D) Deletes a file 

 

3. Which command lists all files, including hidden ones, in a directory?*   

A) ls    B) ls -l    C) ls -a    D) ls -h 

 



 

 Periyar University – CDOE| Self-Learning Material 
 

39 

4. Which command is used to create a new directory in bash?*   

A) mkdir    B) rmdir    C) touch    D) rm 

 

5. Which command is used to display the contents of a file in the terminal?*   

A) cat     B) ls     C) rm     D) cp 

 

 

6. Which symbol is used to separate multiple commands on a single line in bash?*   

A) ;    B) &     C) |    D) # 

 

7. What is the correct file extension for a bash script?*   

A) .sh     B) .bash    C) .script    D) .txt 

 

8. Which command is used to display a message in a bash script?*   

A) echo    B) print    C) show    D) display 

 

9. How do you assign a value to a variable in bash?*   

A) variable = value   B) variable=value   C) $variable = value    D) var 

value 

 

10. Which symbol is used to redirect the output of a command to a file?*   

A) >     B) <     C) |     D) & 

 

11. What is the purpose of the pipe (|) command in bash?**   

A) To run commands in the background    B) To combine two files   

C) To send the output of one command as input to another command   

D) To terminate a process 



 

 Periyar University – CDOE| Self-Learning Material 
 

40 

12. Which command is used to perform arithmetic operations in a bash script?*   

A) math    B) calc    C) expr    D) compute 

 

 

13. Which command is used to exit a script in bash?*   

A) exit    B) quit    C) stop    D) end 

 

14. What is the basic syntax of an if-then statement in bash?*   

A) if [ condition ]; then ... fi     B) if ( condition ) { ... }   

C) if [ condition ] { ... } endif    D) if ( condition ); then ... done 

 

15. How do you nest if statements in bash?*   

A) By using elif     B) By using multiple if statements   

C) By using case     D) By using switch 

 

16. Which command is used for evaluating conditions in bash scripts?*   

A) test    B) check    C) eval    D) condition 

 

17. Which operator is used to test compound conditions in bash?*   

A) &&    B) ||    C) both A and B    D) either A or B 

 

18. What is the difference between single [ and double [[ brackets in bash?**   

A) There is no difference.   

B) Double brackets provide additional functionality.   

C) Single brackets are used for strings only.   

D) Double brackets are used for arithmetic only. 

19. Which command is used to perform pattern matching in bash?*   

A) match    B) case    C) switch    D) pattern 



 

 Periyar University – CDOE| Self-Learning Material 
 

41 

 

Here are the answers: 

1. A)     2. B)     3. C)   4. A)    5. A)    6. A)    7. A)    8. A)     9. B)    10. A)      11. 

C)   12. C)   13. A)  14. A)   15. A)   16. A)  17. C)   18. B)   19. B)  

Self Assessment Questions 

1. Write difference between Sof and Hard links ? 

2. Difference between Linux and Windows  

3. Important feature of Linux OS  

4. How to traverse the file system in Linux ? 

5. Compare local variable and Global variable. 

6. Define wildcard character with examples. 

7. Write any 10 shell commands with example. 

8. Explain Redirecting Input and Output with example. 

9. Explain floating point solution with example. 

10. Brief explain if statements with examples. 

 

Glossary 

1. `ls` 

- **Description**: Lists the contents of a directory. 

- **Usage**: `ls [options] [directory]` 

- **Options**: ̀ -l` (long format), ̀ -a` (include hidden files), ̀ -h` (human-readable sizes). 

 

2. `cd` 

- **Description**: Changes the current directory. 

- **Usage**: `cd [directory]` 

 

3. `pwd` 

- **Description**: Prints the current working directory. 

- **Usage**: `pwd` 

 

4. `mkdir` 

- **Description**: Creates a new directory. 



 

 Periyar University – CDOE| Self-Learning Material 
 

42 

- **Usage**: `mkdir [directory]` 

 

 

 

5. `rmdir` 

- **Description**: Removes an empty directory. 

- **Usage**: `rmdir [directory]` 

 

6. `rm` 

- **Description**: Removes files or directories. 

- **Usage**: `rm [options] [file/directory]` 

- **Options**: `-r` (recursive, for directories), `-f` (force). 

 

7. `cp` 

- **Description**: Copies files or directories. 

- **Usage**: `cp [options] [source] [destination]` 

- **Options**: `-r` (recursive), `-i` (interactive). 

 

8. `mv` 

- **Description**: Moves or renames files or directories. 

- **Usage**: `mv [source] [destination]` 

 

9. `touch` 

- **Description**: Creates an empty file or updates the timestamp of an existing file. 

- **Usage**: `touch [file]` 

 

10. `cat` 

- **Description**: Concatenates and displays the content of files. 

- **Usage**: `cat [file]` 

 

11. `more` 

- **Description**: Views the content of a file one page at a time. 

- **Usage**: `more [file]` 

 

 



 

 Periyar University – CDOE| Self-Learning Material 
 

43 

12. `less` 

- **Description**: Views the content of a file with backward movement capability. 

- **Usage**: `less [file]` 

 

 

13. `head` 

- **Description**: Displays the first few lines of a file. 

- **Usage**: `head [file]` 

 

14. `tail` 

- **Description**: Displays the last few lines of a file. 

- **Usage**: `tail [file]` 

 

15. `echo` 

- **Description**: Displays a line of text or the value of a variable. 

- **Usage**: `echo [text]` 

 

16. `grep` 

- **Description**: Searches for a pattern in files. 

- **Usage**: `grep [options] [pattern] [file]` 

- **Options**: `-i` (ignore case), `-r` (recursive), `-v` (invert match). 

 

17. `find` 

- **Description**: Searches for files and directories. 

- **Usage**: `find [path] [options] [expression]` 

 

18. `chmod` 

- **Description**: Changes file permissions. 

- **Usage**: `chmod [permissions] [file]` 

 

19. `chown` 

- **Description**: Changes file owner and group. 

- **Usage**: `chown [owner][:group] [file]` 

 

20. `df` 



 

 Periyar University – CDOE| Self-Learning Material 
 

44 

- **Description**: Displays disk space usage. 

- **Usage**: `df [options]` 

- **Options**: `-h` (human-readable). 

 

 

Open-source e-content links: 

https://www.techtarget.com/searchdatacenter/definition/bash-Bourne-Again-Shell 

https://opensource.com/resources/what-bash 

books  

1.Pro Bash Programming: Scripting the Linux Shell by Chris F.A. Johnson and Jayant 

Kumar 

2. "The Linux Command Line: A Complete Introduction" by William E. Shotts Jr. 

UNIT – II 

 

 Objective: 

 Enhance the script’s readability and maintainability by organizing commands and 
functions logically. 

 Improve the script’s interaction with users by effectively managing input and 
providing clear instructions and feedback. 

 Manage the execution flow of the script efficiently, allowing for better control and 
error handling. 

2.1 More Structured Commands 

Looping with For Statement : 

Iterating through a series of commands is a common programming practice. Often, 

you need to repeat a set of commands until a specific condition has been met, such as 

processing all the files in a directory., all the  

The bash shell provides the for command to allow you to create a loop that iterates 

through a series of values. Each iteration performs a defined set of commands using one 

of the values in the series. Here’s the basic format of the bash shell for command: 

https://www.techtarget.com/searchdatacenter/definition/bash-Bourne-Again-Shell
https://opensource.com/resources/what-bash


 

 Periyar University – CDOE| Self-Learning Material 
 

45 

      for var in list  

   do  

    commands  

   done  

   You supply the series of values used in the iterations in the list parameter. You can 

specify the values in the list in several ways.  

  Reading values in a list : 

The most basic use of the for command is to iterate through a list of values defined within 

the for command itself: 

 

$ cat  test1  

#!/bin/bash 

# basic for command 

 for test in  Akshaya  Dhanush  Gokul  Gopika  Gowri   Gowtham   

do 

     echo The next state is $test  

done 

$ ./test1 

The next state is Akshaya  

The next state is Dhanush  

The next state is Gokul  

The next state is Gopika  

The next state is Gowri  

The next state is Gowtham  

$ 

Reading complex values in a list  

There are times when you run into data that causes problems. Here’s a classic example 

of what can cause problems for shell script programmers:  

$ cat badtest1  

#!/bin/bash  

# another example of how not to use the for command  



 

 Periyar University – CDOE| Self-Learning Material 
 

46 

 for test in I don't know if this’ll work  

do  

   echo "word:$test"  

done  

$ ./badtest1  

word:I  

word:dont know if thisll  

word:work  

 

 

Reading complex values in a list : 

 The shell saw the single quotation marks within the list values and attempted to 

use them to define a single data value, and it really messed things up in the 

process.  

 You have two ways to solve this problem:  

 Use the escape character (the backslash) to escape the single quotation 

mark.  

 Use double quotation marks to define the values that use single quotation 

marks.  

 Neither solution is all that fantastic, but each one helps solve the problem:  

 $ cat test2  

 #!/bin/bash  

 # another example of how not to use the for command  

  for test in I don\'t know if "this'll" work 

 do  

 echo "word:$test"  



 

 Periyar University – CDOE| Self-Learning Material 
 

47 

 done  

Output 

 $ ./test2  

 word:I  

 word:don't  

 word:know  

 word:if  

 word:this'll  

 word:work  

 $  

Reading a list from a variable  : 

Often what happens in a shell script is that you accumulate a list of values stored 

in a variable and then need to iterate through the list. You can do this using the for 

command as well:   

 $ cat  test4  

  #!/bin/bash  

 # using a variable to hold the list  

 list=“Salem Erode  Namakkal  Dharmapuri "  

 list=$list    " Kallakurichi“  

 for state in  $list  

 do  

 echo "Have you ever visited $state?“ 

  done 

Output 

$ ./test4  

Have you ever visited Salem?  



 

 Periyar University – CDOE| Self-Learning Material 
 

48 

Have you ever visited  Erode?  

Have you ever visited  Namakkal?  

Have you ever visited Dharmapuri?  

Have you ever visited    Kallakurichi?  

$  

 The $list variable contains the standard text list of values to use for the iterations. 

  Notice that the code also uses another assignment statement to add (or 

concatenate) an item to the existing list contained in the $list variable.  

 This is a common method for adding text to the end of an existing text string 

stored in a variable.  

Reading values from a command : 

 $ cat test5  

 #!/bin/bash  

 # reading values from a file  

 file="states"  

 for state in $(cat $file) do  

 echo "Visit beautiful $state"  

 done  

 $ cat states  

 Alabama  

 Alaska  

 Arizona  

 Arkansas  

This example uses the cat command in the command substitution to display the 

contents of the file states. Notice that the states file includes each state on a separate 

line, not sepa- rated by spaces. The for command still iterates through the output of the 

cat command one line at a time, assuming that each state is on a separate line. 



 

 Periyar University – CDOE| Self-Learning Material 
 

49 

 Colorado  

 Connecticut  

 Delaware  

 Florida  

 Georgia  

 $ ./test5  

 Visit beautiful Alabama  

 Visit beautiful Alaska  

 Visit beautiful Arizona  

 Visit beautiful Arkansas  

 Visit beautiful Colorado  

 Visit beautiful Connecticut  

 Visit beautiful Delaware  

 Visit beautiful Florida  

 Visit beautiful Georgia  

 $  

Changing the field separator : 

 The cause of this problem is the special environment variable IFS, called the 

internal field separator.  

 The IFS environment variable defines a list of characters the bash shell uses as 

field separators.  

 By default, the bash shell considers the following characters as field separators:  

 A space  

 A tab  

 A newline 

 Eg. IFS=$'\n‘ 



 

 Periyar University – CDOE| Self-Learning Material 
 

50 

 IFS=$'\n':;“ 

 This assignment uses the newline, colon, semicolon, and double 

quotation mark characters as field separators.  

 Reading a directory using wildcards  

 Finally, you can use the for command to automatically iterate through a directory of 

files. To do this, you must use a wildcard character in the file or pathname. This 

forces the shell to use file globbing. .  

 $ cat  test6 

 # iterate through all the files in a directory  

 for file in /home/rich/test/* do 

 if [ -d "$file" ] then  

 echo "$file is a directory"  

 elif [ -f "$file" ] then  

 echo "$file is a file"  

 fi done  

 

output $ ./test6  

/home/rich/test/dir1 is a directory  

/home/rich/test/myprog.c is a file  

/home/rich/test/myprog is a file  

/home/rich/test/myscript is a file  

/home/rich/test/newdir is a directory  

/home/rich/test/testdir is a directory  

/home/rich/test/testing is a file  

/home/rich/test/testprog is a file  

/home/rich/test/testprog.c is a file  



 

 Periyar University – CDOE| Self-Learning Material 
 

51 

$ The for command iterates through the results of the /home/rich/test/* listing. 

The while Command : 

 The while command is somewhat of a cross between the if-then statement and the 

for loop.  

 The while command allows you to define a command to test and then loop through 

a set of commands for as long as the defined test command returns a zero exit 

status.  

 It tests the test command at the start of each iteration.  

 When the test command returns a non- zero exit status, the while command stops 

executing the set of commands.  

Basic while format  

Here’s the format of the while command:  

while test command  

do  

 other commands  

done  

Example 

The most common use of the test command is to use brackets to check a value of a 

shell variable that’s used in the loop commands:  

$ cat test10  

#!/bin/bash  

# while command test  

var1=10  

while [ $var1 -gt 0 ] do  

echo $var1  

var1=$[ $var1 - 1 ] done  



 

 Periyar University – CDOE| Self-Learning Material 
 

52 

$ ./test10 

The until Command 

 The until command works in exactly the opposite way from the while command. 

The until command requires that you specify a test command that normally 

produces a non- zero exit status. As long as the exit status of the test command is 

non-zero, the bash shell executes the commands listed in the loop. When the test 

command returns a zero exit status, the loop stops.  

 As you would expect, the format of the until command is:  

     until test commands  

      do  

      other commands  

     done  

 Similar to the while command, you can have more than one test command in the 

until command statement. Only the exit status of the last command determines if 

the bash shell executes the other commands defined.  

Example 

 The following is an example of using the until command:  

$ cat test12  

#!/bin/bash  

# using the until command 

var1=100  

until [ $var1 -eq 0 ] do  

echo $var1  

var1=$[ $var1 - 25 ] done  

$ ./test12  

Nesting Loops 



 

 Periyar University – CDOE| Self-Learning Material 
 

53 

 A loop statement can use any other type of command within the loop, including 

other loop commands. This is called a nested loop.  

 Care should be taken when using nested loops, because you’re performing an 

iteration within an iteration, which multiplies the number of times commands are 

being run.  

 Here’s a simple example of nesting a for loop inside another for loop:  

$ $ cat test14  

#!/bin/bash  

# nesting for loops  

 for (( a = 1; a <= 3; a++ )) do  

echo "Starting loop $a:"  

for (( b = 1; b <= 3; b++ )) do  

echo " Inside loop: $b" done  

Done  

Output 

$ ./test14 

Starting loop 1:  

Inside loop: 1  

Inside loop: 2  

Inside loop: 3  

Starting loop 2:  

Inside loop: 1  

Inside loop: 2  

Inside loop: 3  

Starting loop 3:  

Inside loop: 1  



 

 Periyar University – CDOE| Self-Learning Material 
 

54 

Inside loop: 2  

Inside loop: 3  

$ 

Controlling the Loop: 

 The break command  

 The continue command  

Each command has a different use in how to control the operation of a loop. The following 

sections describe how you can use these commands to control the operation of your 

loops.  

 The break command  

 The break command is a simple way to escape a loop in progress. You can use 

the break command to exit any type of loop, including while and until loops.  

 You can use the break command in several situations. This section shows each of 

these methods.  

Break command 

$ cat test17 #!/bin/bash  

# breaking out of a for loop  

   

for var1 in 1 2 3 4 5 6 7 8 9 10 do  

if [ $var1 –eq  5 ] then  

break  

fi  

echo "Iteration number: $var1" done  

echo "The for loop is completed"  

 

 



 

 Periyar University – CDOE| Self-Learning Material 
 

55 

Output 

$ ./test17 

Iteration number: 1  

Iteration number: 2  

Iteration number: 3  

Iteration number: 4  

The for loop is completed  

$  

The continue command  

 The continue command is a way to prematurely stop processing commands inside 

of a loop but not terminate the loop completely.  

 This allows you to set conditions within a loop where the shell won’t execute 

commands.  

 Here’s a simple example of using the continue command in a for loop:  

When the conditions of the if-then statement are met (the value is greater than 5 and less 

than 10), the shell executes the continue command, which skips the rest of the 

commands in the loop, but keeps the loop going.  

When the if-then condition is no longer met, things return to normal.  

 

Example 

$ cat test21 #!/bin/bash  

# using the continue command  

 for (( var1 = 1; var1 < 15; var1++ ))  

do  

if [ $var1 -gt 5 ] && [ $var1 -lt 10 ] then  

continue  



 

 Periyar University – CDOE| Self-Learning Material 
 

56 

fi  

echo "Iteration number: $var1"  

done  

  $ ./test21  

Processing the Output of a Loop : 

 Finally, you can either pipe or redirect the output of a loop within your shell script. 

You do this by adding the processing command to the end of the done command:  

for file in /home/rich/* do  

if [ -d "$file" ] then  

echo "$file is a directory" elif  

echo "$file is a file"  

fi  

done > output.txt  

 Instead of displaying the results on the monitor, the shell redirects the results of the 

for command to the file output.txt.  

 Consider the following example of redirecting the output of a for command to a file:  

$ cat test23 #!/bin/bash  

# redirecting the for output to a file  

 for (( a = 1; a < 10; a++ )) do  

echo "The number is $a" done > test23.txt  

echo "The command is finished."  

 $ ./test23  

 The command is finished.  

 $ cat test23.txt The number is 1 The number is 2 The number is 3 The number is 4 

The number is 5 The number is 6 The number is 7 The number is 8 The number is 

9  



 

 Periyar University – CDOE| Self-Learning Material 
 

57 

 $  

 The shell creates the file test23.txt and redirects the output of the for command 

only to the file. The shell displays the echo statement after the for command just as 

normal.  

2.2 Handling User Input:  

• Passing parameters 

• Tracking parameters 

• Being shifty 

• Working with options 

• Standardizing options 

• Getting user input 

Passing Parameters 

• The most basic method of passing data to your shell script is to use command line 

parameters. Command line parameters allow you to add data values to the 

command line when you execute the script:  

• $ ./addem 10 30  

• This example passes two command line parameters (10 and 30) to the script 

addem. The script handles the command line parameters using special variables. 

The following sections describe how to use command line parameters in your bash 

shell scripts.  

•  

Reading parameters 

• The bash shell assigns special variables, called positional parameters, to all of 

the command line parameters entered.  

• This includes the name of the script the shell is executing.  

• The positional parameter variables are standard numbers, with $0 being the 

script’s name, $1 being the first parameter, $2 being the second parameter, 

and so on, up to $9 for the ninth parameter.  



 

 Periyar University – CDOE| Self-Learning Material 
 

58 

• A simple example of using one command line parameter in a shell script 

• $ cat test1.sh  

• #!/bin/bash  

• # using one command line parameter #  

• factorial=1  

• for (( number = 1; number <= $1 ; number++ )) do  

• factorial=$[ $factorial * $number ] done  

• echo The factorial of $1 is $factorial  

• $  

• $ ./test1.sh 5  

• The factorial of 5 is 120  

• $  

• You can use the $1 variable just like any other variable in the shell script.  

• The shell script automatically assigns the value from the command line 

parameter to the variable; you don’t need to do anything with it.  

If you need to enter more command line parameters, each parameter must be separated 

by a space on the command line: 

• $ cat test2.sh  

• #!/bin/bash  

• # testing two command line parameters #  

• total=$[ $1 * $2 ]  

• echo The first parameter is $1. echo The second parameter is $2. echo The total 

value is $total.  

• $  

Result 

• $ ./test2.sh 2 5  



 

 Periyar University – CDOE| Self-Learning Material 
 

59 

• The first parameter is 2. The second parameter is 5. The total value is 10.  

• $  

Reading the script name 

You can use the $0 parameter to determine the script name the shell started from the 

command line. This can come in handy if you’re writing a utility that can have multiple 

functions.  

• $ cat test5.sh  

• #!/bin/bash  

• # Testing the $0 parameter #  

• echo The zero parameter is set to: $0 #  

• $  

• $ bash test5.sh  

• The zero parameter is set to: test5.sh  

• $  

• $ ./test5.sh  

• The zero parameter is set to: ./test5.sh  

• $  

Testing parameters 

Be careful when using command line parameters in your shell scripts. If the script is 

run without the parameters, bad things can happen:  

      $ ./addem 2  

             ./addem: line 8: 2 + :  

       syntax error: operand expected (error token is " ")  

       The calculated value is  

      $ 



 

 Periyar University – CDOE| Self-Learning Material 
 

60 

When the script assumes there is data in a parameter variable, and no data is present, 

most likely you’ll get an error message from your script. This is a poor way to write scripts.  

• Always check your parameters to make sure the data is there before using it:  

• $ cat test7.sh  

• #!/bin/bash  

• # testing parameters before use #  

• if [ -n "$1" ] then  

• echo Hello $1, glad to meet you. else  

• echo "Sorry, you did not identify yourself. "  

• fi  

• $  

• $ ./test7.sh Rich  

• Hello Rich, glad to meet you.  

• $  

• $ ./test7.sh  

• Sorry, you did not identify yourself.  

• $  

• In this example, the -n test evaluation was used to check for data in the $1 

command line parameter.  

 

Using  Special Parameter Variables 

• A few special bash shell variables track command line parameters. This section 

describes what they are and how to use them.  

• Counting parameters  

• As you saw in the last section, you should verify command line parameters before 

using them in your script. For scripts that use multiple command line parameters, 

this checking can get tedious.  



 

 Periyar University – CDOE| Self-Learning Material 
 

61 

• Instead of testing each parameter, you can count how many parameters were 

entered on the command line. The bash shell provides a special variable for this 

purpose.  

Example 

• The special $# variable contains the number of command line parameters included 

when the script was run. You can use this special variable anywhere in the script, 

just like a nor- mal variable:  

• $ cat test8.sh  

• #!/bin/bash  

• # getting the number of parameters #  

• echo There were $# parameters supplied.  

• $  

Example 

• $ ./test8.sh  

• There were 0 parameters supplied.  

• $  

• $ ./test8.sh 1 2 3 4 5  

•  There were 5 parameters supplied.  

• $  

• $ ./test8.sh 1 2 3 4 5 6 7 8 9 10  

• There were 10 parameters supplied.  

• $  

• $ ./test8.sh "Rich Blum"  

• There were 1 parameters supplied.  

• $  

Now you have the ability to test the number of parameters present before trying to use 

them: 



 

 Periyar University – CDOE| Self-Learning Material 
 

62 

• $ cat test9.sh  

• #!/bin/bash  

• # Testing parameters #  

• if [ $# -ne 2 ] then  

• echo   

• echo Usage: test9.sh a b echo  

• else  

• total=$[ $1 + $2 ] echo  

• echo The total is $total echo  

• fi #  

$  
Output 

• $ bash test9.sh  

•  Usage: test9.sh a b  

•  $ bash test9.sh 10  

•  Usage: test9.sh a b  

•  $ bash test9.sh 10 15  

•  The total is 25  

•  $  

• The if-then statement uses the -ne evaluation to perform a numeric test of the 

command line parameters supplied. If the correct number of parameters isn’t 

present, an error message displays showing the correct usage of the script.  

• $ cat test10.sh  

• #!/bin/bash  

• # Grabbing the last parameter #  

• params=$#  



 

 Periyar University – CDOE| Self-Learning Material 
 

63 

• echo  

• echo The last parameter is $params  

• echo The last parameter is ${!#}  

• echo#  

• $  

• $ bash test10.sh 1 2 3 4 5  

•  The last parameter is 5 The last parameter is 5  

•  $  

• $ bash test10.sh  

•  The last parameter is 0  

• The last parameter is test10.sh  

•  $  

Grabbing all the data 

• In some situations you want to grab all the parameters provided on the command 

line. Instead of having to mess with using the $# variable to determine how many 

parameters are on the command line and having to loop through all of them, you 

can use a couple of other special variables.  

• The $* and $@ variables provide easy access to all your parameters. Both of these 

variables include all the command line parameters within a single variable.  

• The $* variable takes all the parameters supplied on the command line as a single 

word. The word contains each of the values as they appear on the command line. 

Basically, instead of treating the parameters as multiple objects, the $* variable 

treats them all as one parameter.  

• The $@ variable, on the other hand, takes all the parameters supplied on the 

command line as separate words in the same string. It allows you to iterate 

through the values, separating out each parameter supplied. This is most often 

accomplished using the for command. 



 

 Periyar University – CDOE| Self-Learning Material 
 

64 

• The shell sets the $# variable to the number of parameters entered on the 

command line. The $* variable contains all the parameters as a single string, 

and the $@ variable contains all the parameters as separate words.  

Being Shifty 

• Another tool you have in your bash shell tool belt is the shift command. The bash 

shell provides the shift command to help you manipulate command line parameters. 

The shift command literally shifts the command line parameters in their 

relative positions.  

• When you use the shift command, it moves each parameter variable one position 

to the left by default. Thus, the value for variable $3 is moved to $2, the value for 

variable $2 is moved to $1, and the value for variable $1 is discarded (note that 

the value for variable $0, the program name, remains unchanged).  

• $ cat test13.sh  

•  #!/bin/bash # demonstrating the shift command echo  

• count=1  

• while [ -n "$1" ]  

• do  

• echo "Parameter #$count = $1"  

• count=$[ $count + 1 ]  

• shift  

done  

• $  

• $ ./test13.sh rich barbara katie jessica  

• Parameter #1 = rich  

• Parameter #2 = barbara  

• Parameter #3 = katie  

• Parameter #4 = jessica  



 

 Periyar University – CDOE| Self-Learning Material 
 

65 

• $  

• $ cat test14.sh  

#!/bin/bash  

# demonstrating a multi-position shift #  

echo  

echo "The original parameters: $*" shift 2  

echo "Here's the new first parameter: $1"  

• $  

• $ ./test14.sh 1 2 3 4 5  

•  The original parameters: 1 2 3 4 5 Here's the new first parameter: 3  

• $  

•  By using values in the shift command, you can easily skip over parameters you 

don’t need.  

Working with Options 

• Options are single letters preceded by a dash that alter the behavior of a 

command. This section shows three methods for working with options in your 

shell scripts.  

•  Finding your options  

• On the surface, there’s nothing all that special about command line options. They 

appear on the command line immediately after the script name, just the same 

as command line parameters.  

• In fact, if you want, you can process command line options the same way you 

process command line parameters.  

Processing simple options 

• In the test13.sh script earlier, you saw how to use the shift command to work 

your way down the command line parameters provided with the script program.  

• You can use this same technique to process command line options.  



 

 Periyar University – CDOE| Self-Learning Material 
 

66 

• $ cat test15.sh  

• #!/bin/bash  

• # extracting command line options as parameters #  

• echo  

• while [ -n "$1" ] do  

• case "$1" in  

• -a) echo "Found the -a option" ;;  

• -b) echo "Found the -b option" ;;  

• -c) echo "Found the -c option" ;;  

• *) echo "$1 is not an option" ;; esac  

• shift done  

• $  

• $ ./test15.sh -a -b -c -d  

•  Found the -a option Found the -b option Found the -c option -d is not an option  

• $  

• The case statement checks each parameter for valid options. When one is found, 

the appropriate commands are run in the case statement.  

• This method works, no matter in what order the options are presented on the 

command line:  

$ ./test15.sh -d -c –a  

-d is not an option  

Found the -c option  

Found the -a option   

• Separating options from parametersThe standard way to do this in Linux is to 

separate the two with a special character code that tells the script when the options 

are finished and when the normal parameters start.  



 

 Periyar University – CDOE| Self-Learning Material 
 

67 

• For Linux, this special character is the double dash (--). The shell uses the double 

dash to indicate the end of the option list. After seeing the double dash, your script 

can safely process the remaining command line parameters as parameters and not 

options.  

• To check for the double dash, simply add another entry in the case 

statement:  

• $ cat test16.sh  

• #!/bin/bash  

• # extracting options and parameters echo  

• while [ -n "$1" ] do  

• case "$1" in  

• -a) echo "Found the -a option" ;;  

• -b) echo "Found the -b option";;  

• -c) echo "Found the -c option" ;;  

--) shift 

• break ;;  

• *) echo "$1 is not an option";; esac  

• shift done  

• #  

• count=1  

• for param in $@ do  

• echo "Parameter #$count: $param" count=$[ $count + 1 ]  

• done  

• $ 

• This script uses the break command to break out of the while loop when it 

encounters the double dash. Because we’re breaking out prematurely, we need to 



 

 Periyar University – CDOE| Self-Learning Material 
 

68 

ensure that we stick in another shift command to get the double dash out of the 

parameter variables.  

•  $ ./test16.sh -c -a -b test1 test2 test3  

•  Found the -c option  Found the -a option  Found the -b option  test1 is 

not an option  

• test2 is not an option  test3 is not an option  

• $  

Processing options with values 

• $ cat test17.sh  

• #!/bin/bash  

• # extracting command line options and values echo  

• while [ -n "$1" ] do  

• case "$1" in  

• -a) echo "Found the -a option";;  

• -b) param="$2"  

• echo "Found the -b option, with parameter value $param" shift ;;  

• -c) echo "Found the -c option";;  

• --) shift  

• break ;;  

• *) echo "$1 is not an option";; esac  shift done  

 

• #  

• count=1  

• for param in "$@" do  

• echo "Parameter #$count: $param" count=$[ $count + 1 ]  

• done  



 

 Periyar University – CDOE| Self-Learning Material 
 

69 

• $  

• $ ./test17.sh -a -b test1 -d  

•  Found the -a option  

• Found the -b option, with parameter value test1  

• -d is not an option  

• $  

 

 In this example, the case statement defines three options that it processes.  

 The -b option also requires an additional parameter value. Because the parameter 

being processed is $1, you know that the additional parameter value is located in $2 

(because all the parameters are shifted after they are processed).  

 Just extract the parameter value from the $2 variable.  

 Of course, because we used two parameter spots for this option, you also need to set 

the shift command to shift one additional position.  

Using the getopt command 

• The getopt command is a great tool to have handy when processing command line 

options and parameters. It reorganizes the command line parameters to make 

parsing them in your script easier.  

 

 

Looking at the command format  

• The getopt command can take a list of command line options and parameters, in 

any form, and automatically turn them into the proper format. It uses the following 

command format:  

   getopt optstring parameters  

   

• Here’s a simple example of how getopt works:  



 

 Periyar University – CDOE| Self-Learning Material 
 

70 

• $ getopt ab:cd -a -b test1 -cd test2 test3  

• -a -b test1 -c -d -- test2 test3  

• $  

•  The optstring defines four valid option letters, a, b, c, and d.  

• A colon (:) is placed behind the letter b in order to require option b to have a 

parameter value.  

• When the getopt command runs, it examines the provided parameter list (-a -b 

test1 -cd test2 test3) and parses it based on the supplied optstring.  

• Notice that it automatically separated the -cd options into two separate options and 

inserted the double dash to separate the additional parameters on the line.  

Using getopt in your scripts 

• One of the set command options is the double dash (--). The double dash instructs 

set to replace the command line parameter variables with the values on the set 

command’s command line.  

• The trick then is to feed the original script command line parameters to the getopt 

command and then feed the output of the getopt command to the set command to 

replace the original command line parameters with the nicely formatted ones from 

getopt.  

• This looks something like this:  

• set -- $(getopt -q ab:cd "$@")  

• Now the values of the original command line parameter variables are replaced with 

the output from the getopt command, which formats the command line parameters 

for us. 

• This command converts command line options and parameters into a standard 

format that you can process in your script.  

• The getopt command allows you to specify which letters it recognizes as options 

and which options require an additional parameter value.  

• he getopt command processes the standard command line parameters and 

outputs the options and parameters in the proper order.  



 

 Periyar University – CDOE| Self-Learning Material 
 

71 

getopts command 

• The final method for handling command line options is via the getopts command 

(note that it’s plural).  

• The getopts command provides more advanced processing of the command line 

parameters.  

• It allows for multi-value parameters, along with identifying options not defined by 

the script.  

Standardizing  Options 

• When you create your shell script, obviously you’re in control of what happens. It’s 

completely up to you as to which letter options you select to use and how you select 

to use them.  

• However, a few letter options have achieved a somewhat standard meaning in the 

Linux world. If you control these options in your shell script, your scripts will be more 

user-friendly.  

 

 

Common Linux Command Line Options 

Option  Description  

 

-a  Shows all objects  

-c  Produces a count  

-d  Specifies a directory  

-e  Expands an object  

-f  Specifies a file to read data from  

-h  Displays a help message for the command  

-i  Ignores text case  

-l  Produces a long format version of the output  



 

 Periyar University – CDOE| Self-Learning Material 
 

72 

Option Description 

-n  Uses a non-interactive (batch) mode  

-o  Specifies an output file to redirect all output to  

-q  Runs in quiet mode  

-r  Processes directories and files recursively  

-s  Runs in silent mode  

-v  Produces verbose output  

-x  Excludes an object  

-y  Answers yes to all questions 

Getting User Input 

• Although providing command line options and parameters is a great way to get data 

from your script users, sometimes your script needs to be more interactive.  

• Sometimes you need to ask a question while the script is running and wait for a 

response from the person running your script.  

• The bash shell provides the read command just for this purpose. 

• An interactive method to obtain data from your script users is the read command. 

The read command allows your scripts to query users for information and wait. The 

read command places any data entered by the script user into one or more variables, 

which you can use within the script.  

• Several options are available for the read command that allow you to customize the 

data input into your script, such as using hidden data entry, applying timed data 

entry, and requesting a specific number of input characters.  

Reading basics  

• The read command accepts input either from standard input (such as from the 

keyboard) or from another file descriptor.  

• After receiving the input, the read command places the data into a variable.  

• Here’s the read command at its simplest:  



 

 Periyar University – CDOE| Self-Learning Material 
 

73 

$ cat test21.sh  

#!/bin/bash  

# testing the read command #  

echo -n "Enter your name: " read name  

echo "Hello $name, welcome to my program. “  

$ 

• In fact, the read command includes the -p option, which allows you to specify a 

prompt directly in the read command line:  

• $ cat test22.sh  

• #!/bin/bash  

• # testing the read -p option #  

• read -p "Please enter your age: " age  

• days=$[ $age * 365 ]  

• echo "That makes you over $days days old! “  

$ ./test21.sh  

Enter your name: Rich Blum  

Hello Rich Blum, welcome to my program.  

$  

• $ ./test22.sh  

• Please enter your age: 10  

• That makes you over 3650 days old!  

• $  

• Timing out  

• Be careful when using the read command. Your script may get stuck waiting for the 
script user to enter data.  

• If the script must go on regardless of whether any data was entered, you can use 
the -t option to specify a timer.  



 

 Periyar University – CDOE| Self-Learning Material 
 

74 

• The -t option specifies the number of seconds for the read command to wait for 
input.  

• $ cat test25.sh  

• #!/bin/bash  

• # timing the data entry #  

• if read -t 5 -p "Please enter your name: " name  

• then  

• echo "Hello $name, welcome to my script"  
else  

• echo  

• echo "Sorry, too slow! "  

• fi  

• $  

• $ ./test25.sh  

• Please enter your name: Rich  

• Hello Rich, welcome to my script  

• $  

• $ ./test25.sh  

• Please enter your name:  

• Sorry, too slow!  

• $  

Reading with no display :  

• Sometimes you need input from the script user, but you don’t want that input to 

display on the monitor. The classic example is when entering passwords, but there 

are plenty of other types of data that you need to hide.  

• The -s option prevents the data entered in the read command from being displayed 

on the monitor; actually, the data is displayed, but the read command sets the text 

color to the same as the background color. Here’s an example of using the -s option 

in a script:  



 

 Periyar University – CDOE| Self-Learning Material 
 

75 

• $ cat test27.sh  

• #!/bin/bash  

• # hiding input data from the monitor #  

• read -s -p "Enter your password: " pass echo  

• echo "Is your password really $pass? "  

example 

$ ./test27.  

Enter your password:  

Is your password really T3st1ng?  

$  

 

Reading from a file  

• Finally, you can also use the read command to read data stored in a file on the 

Linux system.  

• Each call to the read command reads a single line of text from the file. 

• When no more lines are left in the file, the read command exits with a non-zero exit 

status.  

• The tricky part is getting the data from the file to the read command. 

• The most common method is to pipe the result of the cat command of the file 

directly to a while command that contains the read command.  

• $ cat test28.sh  

• #!/bin/bash  

• # reading data from a file # 

• count=1  

• cat test | while read line  

• do  



 

 Periyar University – CDOE| Self-Learning Material 
 

76 

• echo "Line $count: $line"  

• count=$[ $count + 1]  

• done  

• echo "Finished processing the file"  

• $  

• $ cat test  

• The quick brown dog jumps over the lazy fox.  

• This is a test, this is only a test.  

• O Romeo, Romeo! Wherefore art thou Romeo?  

• $  

• $ ./test28.sh  

• Line 1: The quick brown dog jumps over the lazy fox.  

• Line 2: This is a test, this is only a test.  

• Line 3: O Romeo, Romeo! Wherefore art thou Romeo?  

• Finished processing the file  

• $  

•  The while command loop continues processing lines of the file with the read 

command, until the read command exits with a non-zero exit status.  

Scripting control 

Stopping processes 

 System administrator is knowing when and how to stop a process. 

 Sometimes, a process gets hung up and needs a gentle push to either get 

going again or stop.  

 Other times, a process runs away with the CPU and refuses to give it up.  

 In both cases, you need a command that allows you to control a process. Linux 

follows the Unix method of inter process communication. 



 

 Periyar University – CDOE| Self-Learning Material 
 

77 

 In Linux, processes communicate with each other using signals. A process 

signal is a predefined message that processes recognize and may choose to 

ignore or act on.  

 The developers program how a process handles signals. Most well-written 

applications have the ability to receive and act on the standard Unix process 

signals.  

Linux Process Signals 

Signal   Name   Description 

_______________________________________________________________________  

1   HUP    Hangs up 

2   INT    Interrupts 

3   QUIT    Stops running 

9   KILL    Unconditionally terminates 

11   SEGV    Produces segment violation 

15   TERM    Terminates if possible 

17   STOP    Stops unconditionally, but doesn’t terminate 

18   TSTP   Stops or pauses, but continues to run in   

                                                 background 

19   CONT    Resumes execution after STOP or TSTP 

2.3 SCRIPTING CONTROL 

 Linux uses signals to communicate with processes running on the system.  

 You can control the operation of your shell script by programming the script to 

perform certain commands when it receives specific signals.  

Signaling the bash shell  

 There are more than 30 Linux signals that can be generated by the system and 

applications.  

 Most common Linux system signals that you’ll run across in your shell script writing.  



 

 Periyar University – CDOE| Self-Learning Material 
 

78 

Signal  Value  Description  

1 SIGHUP  Hangs up the process 

2 SIGINT  Interrupts the process  

3 SIGQUIT  Stop the process 

9 SIGKILL  Unconditionally terminates the process  

15 SIGTERM  Terminate the process if possible 

17 SIGSTOP  Unconditionally stops, but doesn’t terminate,  
the process  

18 SIGTSTP  Stops or pauses the process, but doesn’t  
terminate  

19 SIGCONT  Continue a stopped process 

 By default, the bash shell ignores any SIGQUIT (3) and SIGTERM (15) signals it 

receives (so an interactive shell cannot be accidentally terminated).  

 However, the bash shell does not ignore any SIGHUP (1) and SIGINT (2) signals it 

receives.  

 If the bash shell receives a SIGHUP signal, such as when you leave an interactive 

shell, it exits.  

 Before it exits, however, it passes the SIGHUP signal to any processes started by 

the shell, including any running shell scripts.  

Generating signals 

 The bash shell allows you to generate two basic Linux signals using key 

combinations on the keyboard.  



 

 Periyar University – CDOE| Self-Learning Material 
 

79 

 This feature comes in handy if you need to stop or pause a runaway script.  

   

Interrupting a process:  

 The Ctrl+C key combination generates a SIGINT signal and sends it to any 

processes currently running in the shell.  

 You can test this by running a command that normally takes a long time to finish 

and pressing the Ctrl+C key combination:  

    $ sleep 100  

     ^C  

     $  

 

 Pausing a process 

 Instead of terminating a process, you can pause it in the middle of whatever it’s 

doing.  

 Sometimes, this can be a dangerous thing (for example, if a script has a file lock 

open on a crucial system file), but often it allows you to peek inside what a script is 

doing without actually terminating the process.  

 When you use the Ctrl+Z key combination, the shell informs you that the process 

has been stopped:  

$ sleep 100  

^Z  

[1]+ Stopped sleep 100  

$  

Trapping signals 

 Instead of allowing your script to leave signals ungoverned, you can trap them 

when they appear and perform other commands.  

 The trap command allows you to specify which Linux signals your shell script can 

watch for and intercept from the shell.  



 

 Periyar University – CDOE| Self-Learning Material 
 

80 

 If the script receives a signal listed in the trap command, it prevents it from being 

processed by the shell and instead handles it locally.  

 The format of the trap command is:  

       trap commands signals  

Trapping a script exit 

 Besides trapping signals in your shell script, you can trap them when the shell 

script exits.  

 This is a convenient way to perform commands just as the shell finishes its job.  

 When the script gets to the normal exit point, the trap is triggered, and the shell 

executes the command you specify on the trap command line.  

  $ cat test1.sh  

 #!/bin/bash  

# Testing signal trapping #  

trap "echo ' Sorry! I have trapped Ctrl-C'" SIGINT # echo This is a test 

script #  

count=1  

while [ $count -le 10 ]  

do  

echo "Loop #$count"  

sleep 1  

count=$[ $count + 1 ]  

done  

#echo "This is the end of the test script" #  

$ ./test1.sh  

This is a test script Loop #1  

Loop #2  

Loop #3  



 

 Periyar University – CDOE| Self-Learning Material 
 

81 

Loop #4  

Loop #5  

^C Sorry! I have trapped Ctrl-C Loop #6  

Loop #7  

Loop #8  

^C Sorry! I have trapped Ctrl-C Loop #9  

Loop #10  

This is the end of the test script  

$  

  Each time the Ctrl+C key combination was used, the script executed the echo 

statement specified in the trap command instead of not managing the signal and 

allowing the shell to stop the script.  

Modifying or removing a trap 

 To handle traps differently in various sections of your shell script, you simply 

reissue the  

 trap command with new options:  

 After the signal trap is modified, the script manages the signal or signals differently. 

However, if a signal is received before the trap is modified, the script processes it 

per the original trap command  

Running Scripts in Background Mode  

 Sometimes, running a shell script directly from the command line interface is 

inconvenient.  

 Some scripts can take a long time to process, and you may not want to tie up the 

command line interface waiting.  

 While the script is running, you can’t do anything else in your terminal session. 

  Fortunately, there’s a simple solution to that problem.  

 Running in the background  



 

 Periyar University – CDOE| Self-Learning Material 
 

82 

 Running a shell script in background mode is a fairly easy thing to do. To run a 

shell  

 script in background mode from the command line interface, just place an 

ampersand  

 symbol (&) after the command: 

$ cat test4.sh  

#!/bin/bash  

# Test running in the background #  

count=1  

while [ $count -le 10 ]  

do  

sleep 1  

count=$[ $count + 1 ]  

done  

$ ./test4.sh &  

[1] 3231  

$  

 When you place the ampersand symbol after a command, it separates the command 

from the bash shell and runs it as a separate background process on the system. The 

first thing that displays is the line:  

 [1] 3231  

 The number in the square brackets is the job number assigned by the shell to the back- 

ground process. The next number is the Process ID (PID) the Linux system assigns to 

the process. Every process running on the Linux system must have a unique PID.  

 As soon as the system displays these items, a new command line interface prompt 

appears. You are returned to the shell, and the command you executed runs safely in 

background mode. At this point, you can enter new commands at the prompt.  

 When the background process finishes, it displays a message on the terminal:  



 

 Periyar University – CDOE| Self-Learning Material 
 

83 

 Done ./test4.sh  

 This shows the job number and the status of the job (Done), along with the command 

used to start the job.  

Be aware that while the background process is running, it still uses your 

terminal monitor for STDOUT and STDERR messages:  

$ cat test5.sh  

#!/bin/bash  

# Test running in the background with output #  

echo "Start the test script" count=1  

while [ $count -le 5 ] do  

echo "Loop #$count" sleep 5  

count=$[ $count + 1 ] done  

#  

echo "Test script is complete" #  

$  

$ ./test5.sh &  

[1] 3275  

$ Start the test script Loop #1  

Loop #2  

Loop #3  

Loop #4  

Loop #5  

Test script is complete  

   

Done ./test5.sh  

$  



 

 Periyar University – CDOE| Self-Learning Material 
 

84 

 

Running Scripts without a Hang-Up 

Sometimes, you may want to start a shell script from a terminal session and let the script 

run in background mode until it finishes, even if you exit the terminal session. You can do 

this by using the nohup command  

16  

The nohup command runs another command blocking any SIGHUP signals that are sent 

to the process. This prevents the process from exiting when you exit your terminal session.  

 $ nohup ./test1.sh &  

[1] 3856  

$ nohup: ignoring input and appending output to 'nohup.out'  

   

$  

Controlling the Job 

 Earlier in this chapter, you saw how to use the Ctrl+C key combination to stop a job 

running in the shell.  

 After you stop a job, the Linux system lets you either kill or restart it.  

 You can kill the process by using the kill  command. Restarting a stopped process 

requires that you send it a SIGCONT signal.  

 The function of starting, stopping, killing, and resuming jobs is called job control.  

 With job control, you have full control over how processes run in your shell 

environment.  

 This section describes the commands used to view and control jobs running in your 

shell.  

Viewing jobs 

The key command for job control is the jobs command. The jobs command allows you to 

view the current jobs being handled by the shell:  



 

 Periyar University – CDOE| Self-Learning Material 
 

85 

 $ cat test10.sh  

#!/bin/bash  

# Test job control #  

echo "Script Process ID: $$" #  

count=1  

while [ $count -le 10 ] do  

echo "Loop #$count" sleep 10  

count=$[ $count + 1 ] done  

#  

echo "End of script..." # 

$  

Output 

$ ./test10.sh  

Script Process ID: 1897 Loop #1  

Loop #2  

^Z  

+ Stopped ./test10.sh  

$  

 The jobs Command Parameters  

Parameter  Description  

 

-l           Lists the PID of the process along with the job number  

-n           Lists only jobs that have changed their status,  

                         since the last notification from the shell  

-p           Lists only the PIDs of the jobs  



 

 Periyar University – CDOE| Self-Learning Material 
 

86 

-r          Lists only the running jobs  

-s           Lists only stopped jobs  

 Restarting stopped jobs  

 Under bash job control, you can restart any stopped job as either a background 

process or a foreground process.  

 A foreground process takes over control of the terminal you’re working on, so be 

careful about using that feature.  

$ ./test11.sh  

^Z  

+ Stopped ./test11.sh  

$ bg  

[1]+ ./test11.sh &  

$  

$ jobs  

[1]+ Running ./test11.sh &  

$ 

 Because the job was the default job, indicated by the plus sign, only the bg command 

was needed to restart it in background mode. Notice that no PID is listed when the job 

is moved into background mode.  

 If you have additional jobs, you need to use the job number along with the bg 

command:  

$ ./test11.sh  

^Z  

+ Stopped ./test11.sh  

$  

$ ./test12.sh  

^Z  

+ Stopped ./test12.sh  

$  

$ bg 2  

[2]+ ./test12.sh &  

$  



 

 Periyar University – CDOE| Self-Learning Material 
 

87 

$ jobs  

[1]+ Stopped ./test11.sh  

[2]- Running ./test12.sh &  

 $  

 

 The command bg 2 was used to send the second job into background mode. 

Notice that when the jobs command was used, it listed both jobs with their status, 

even though the default job is not currently in background mode.  

 

To restart a job in foreground mode, use the fg command, along with the job number:  

 $ fg 2  

 ./test12.sh  

 This is the script's end...  

 $  

 Because the job is running in foreground mode, the command line interface 

prompt does not appear until the job finishes.  

 

Being Nice  

 In a multitasking operating system (which Linux is), the kernel is responsible for 

assigning CPU time for each process running on the system.  

 The scheduling priority is the amount of CPU time the kernel assigns to the 

process relative to the other processes.  

 By default, all processes started from the shell have the same scheduling 

priority on the Linux system.  

 Sometimes, you want to change the priority of a shell script, either lowering its 

priority so it doesn’t take as much processing power away from other processes 

or giving it a higher priority so it gets more processing time.  

 You can do this by using the nice command.  

Using the nice command 

 The nice command allows you to set the scheduling priority of a command as you 

start it.  



 

 Periyar University – CDOE| Self-Learning Material 
 

88 

 To make a command run with less priority, just use the -n command line option for 

nice to specify a new priority level:  

$ nice -n 10 ./test4.sh > test4.out &  

[1] 4973  

$  

$ ps -p 4973 -o pid,ppid,ni,cmd  

PID PPID NI CMD  

4973 4721 10 /bin/bash ./test4.sh  

 $  

 Sometimes, you’d like to change the priority of a command that’s already 

running on the system. That’s what the renice command is for. It allows you to 

specify the PID of a running process to change its priority:  

 $ ./test11.sh &  

[1] 5055  

$  

$ ps -p 5055 -o pid,ppid,ni,cmd  

PID PPID NI CMD  

5055 4721 0 /bin/bash ./test11.sh  

$  

$ renice -n 10 -p 5055  

5055: old priority 0, new priority 10  

$  

$ ps -p 5055 -o pid,ppid,ni,cmd  

PID PPID NI CMD  

5055 4721 10 /bin/bash ./test11.sh  

$  

 The renice command automatically updates the scheduling priority of the running 

process.  

 As with the nice command, the renice command has some limitations:  

 You can only renice processes that you own.  

 You can only renice your processes to a lower priority.  

 The root user can renice any process to any priority.  



 

 Periyar University – CDOE| Self-Learning Material 
 

89 

 If you want to fully control running processes, you must be logged in as the root 

account or use the sudo command. 

 Sudo (superuser do) is a utility for UNIX- and Linux-based systems that provides an 

efficient way to give specific users permission to use specific system commands at the 

root (most powerful) level of the system. Sudo also logs all commands and arguments.  

Scheduling a job using the at command  

 The at command allows you to specify a time when the Linux system will run a 

script.  

 The at command submits a job to a queue with directions on when the shell 

should run the job. The at daemon, atd, runs in the background and checks the 

job queue for jobs to run.  

 Most Linux distributions start this daemon automatically at boot time. 

 Understanding the at command format  

 The basic at command format is pretty simple:  

 at [-f filename] time  

 By default, the at command submits input from STDIN to the queue. You can 

specify a file- name used to read commands (your script file) using the -f 

parameter.  

 The time parameter specifies when you want the Linux system to run the job. If 

you specify a time that has already passed, the at command runs the job at that 

time on the next day.  

 You can get pretty creative with how you specify the time. The at command 

recognizes lots of different time formats:  

 A standard hour and minute, such as 10:15  

 An AM/PM indicator, such as 10:15PM  

 A specific named time, such as now, noon, midnight, or teatime (4PM)  

 Retrieving job output 

 When the job runs on the Linux system, there’s no monitor associated with the 

job. 

  Instead, the Linux system uses the e-mail address of the user who submitted 

the job as STDOUT and STDERR.  

 Any output destined to STDOUT or STDERR is mailed to the user via the mail 

system.  



 

 Periyar University – CDOE| Self-Learning Material 
 

90 

Scheduling regular scripts 

 Using the at command to schedule a script to run at a preset time is great, but 

what if you need that script to run at the same time every day or once a week or 

once a month? 

  Instead of having to continually submit at jobs, you can use another feature of 

the Linux system.  

Starting scripts with a new shell 

 The ability to run a script every time a user starts a new bash shell (even just when 

a specific user starts a bash shell) can come in handy. Sometimes, you want to set 

shell features for a shell session or just ensure that a specific file has been set.  

 Recall the startup files run when a user logs into the bash shell (covered) Also, 

remember that not every distribution has all the startup files.  

  Essentially, the first file found in the following ordered list is run and the rest are 

ignored:  

$HOME/.bash_profile  

$HOME/.bash_login  

$HOME/.profile 

 

Unit Summary  

The Linux system allows you to control your shell scripts by using signals. The 

bash shell accepts signals and passes them on to any process running under the 

shell process. Linux sig- nals allow you to easily kill a runaway process or 

temporarily pause a long-running process. 

You can use the trap statement in your scripts to catch signals and perform 

commands. This feature provides a simple way to control whether a user can 

interrupt your script while it’s running. 

By default, when you run a script in a terminal session shell, the interactive shell 

is suspended until the script completes. You can cause a script or command to 

run in background mode by adding an ampersand sign (&) after the command 

name. When you run a script 



 

 Periyar University – CDOE| Self-Learning Material 
 

91 

or command in background mode, the interactive shell returns, allowing you to 

continue entering more commands. Any background processes run using this 

method are still tied to the terminal session. If you exit the terminal session, the 

background processes also exit. 

To prevent this from happening, use the nohup command. This command intercepts 

any signals intended for the command that would stop it — for example, when 

you exit the terminal session. This allows scripts to continue running in 

background mode even if you exit the terminal session. When you move a 

process to background mode, you can still control what happens to it. The jobs 

command allows you to view processes started from the shell session. After you 

know the job ID of a background process, you can use the kill command to send 

Linux signals to the process or use the fg command to bring the process back to the 

foreground in the shell session. You can suspend a running foreground process 

by using the Ctrl+Z key combination and place it back in background mode, using 

the bg command. 

 

Let us sum up 

Structured commands refer to a set of commands that are organized in a systematic 

and logical manner. These commands are often used in command-line interfaces (CLIs) 

and scripts to perform tasks or automate processes. 

Script control involves writing and managing scripts to automate tasks and control 

system behavior. Scripts can be written in various scripting languages, such as Bash, 

PowerShell, Python, and others.  

 

Check your progress 

1. Which syntax is correct for a basic for loop in bash?**   

A) for i in list; do ... done    B) for (i=0; i<list; i++); do ... done   

C) for i: list; { ... }     D) foreach i (list); do ... done 

 

2. What is the key difference between until and while loops in bash?**   

A) until loops execute until a condition is true, while loops execute while a condition is true.   



 

 Periyar University – CDOE| Self-Learning Material 
 

92 

B) until loops are used for infinite loops, while loops are not.   

C) until loops do not support conditions, while loops do.   

 

D) until loops can only be used with integers, while loops can be used with any data type. 

 

3. Which of the following is the correct syntax for a while loop in bash?**   

A) while (condition); do ... done    B) while [ condition ]; do ... done   

C) while condition; do ... done    D) while { condition }; do ... done 

 

4. Which command can be used to exit from the inner loop of nested loops in bash?*   

A) exit    B) break    C) continue    D) return 

 

5. How do you redirect the output of a loop to a file in bash?*   

A) for i in list; do ... done > output.txt   B) for i in list; do > output.txt ... done   

C) for i in list; > output.txt do ... done   D) for i in list; do ... > output.txt done 

 

6. How do you access the first parameter passed to a bash script?*   

A) $0     B) $1    C) $2     D) $# 

 

7. Which variable holds the total number of parameters passed to a bash script?*   

A) $#     B) $0     C) $*     D) $@ 

 

8. What does the shift command do in a bash script?**   

A) Shifts the command-line arguments to the left.   

B) Shifts the command-line arguments to the right.   

C) Clears all command-line arguments.   

D) Resets the script's parameters. 



 

 Periyar University – CDOE| Self-Learning Material 
 

93 

9. Which command is typically used to parse command-line options in a bash script?*   

A) getopts    B) getopt    C) parseopts    D) optparse 

 

10. What is the typical format for specifying options in a bash script?*   

A) -option    B) /option    C) --option    D) option= 

 

11. Which command is used to get user input in a bash script?*   

A) read    B) input    C) get    D) scan 

 

12. Which command is used to trap signals in a bash script?*   

 

A) trap    B) catch    C) signal    D) handle 

 

13. Which symbol is used to run a script in the background?*   

A) &     B) &&    C) |     D) || 

 

14. Which command prevents a script from being terminated by a hang-up signal?*   

A) nohup    B) nohangup    C) nohup -i    D) prevent-hangup 

 

15. Which command is used to bring a background job to the foreground?*   

A) fg     B) bg     C) jobs    D) kill 

 

16. Which command is used to start a script with a lower priority?*   

A) low    B) renice    C) nice    D) setpriority 

 

17. Which command is used to schedule scripts to run at specific times?*   

A) schedule    B) at    C) crontab    D) timer 



 

 Periyar University – CDOE| Self-Learning Material 
 

94 

 

Here are the answers: 

1. A)     2. A)     3. B)     4. B)      5. A)      6. B)       7. A)      8. A)       9. A)       10. C)  

11. A)    12. A)       13. A)      14. A)      15. A)       16. C)         17. C)  

 

Self Assessment Questions : 

1. Compare C-Style command and multiple test command. 

2. Handling user input in linux example. 

3. How to use job command in linux. 

4. Differentiate between break and continue with example program. 

5. Explain about looping statements with examples. 

6. How to get user input with multiple options. 

7. Explain script control commands with example. 

8. How to handling user input? Explain in detail. 

 

Open source e-content links 

https://www.slideshare.net/slideshow/linux-commands-and-file-

structure/72805453 

https://linuxconfig.org/handling-user-input-in-bash-scripts 

https://youtu.be/42iQKuQodW4?si=ioDEWcbiRvFQ-HfY 

 

Glossary 

ls: Lists the contents of a directory. 

 

Usage: ls [options] [directory] 

Options: -l (long format), -a (include hidden files), -h (human-readable sizes). 

cd: Changes the current directory. 

 

Usage: cd [directory] 

pwd: Prints the current working directory. 

 



 

 Periyar University – CDOE| Self-Learning Material 
 

95 

Usage: pwd 

mkdir: Creates a new directory. 

 

Usage: mkdir [directory] 

rmdir: Removes an empty directory. 

 

Usage: rmdir [directory] 

rm: Removes files or directories. 

 

Usage: rm [options] [file/directory] 

Options: -r (recursive), -f (force). 

cp: Copies files or directories. 

 

Usage: cp [options] [source] [destination] 

Options: -r (recursive), -i (interactive). 

mv: Moves or renames files or directories. 

 

Usage: mv [source] [destination] 

touch: Creates an empty file or updates the timestamp of an existing file. 

 

Usage: touch [file] 

tar: Archives files. 

 

Usage: tar [options] [archive] [files] 

Options: -c (create), -x (extract), -t (list), -z (gzip compression). 

 

echo: Displays a line of text or the value of a variable. 

 

Usage: echo [text] 

read: Reads a line of input from the user. 

 

Books 

 

1.Learning the bash Shell: Unix Shell Programming by Cameron Newham and Bill 

Rosenblatt 



 

 Periyar University – CDOE| Self-Learning Material 
 

96 

 

2.Bash Cookbook: Solutions and Examples for Bash Users" by Carl Albing, JP 

Vossen, and Cameron Newham 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 Periyar University – CDOE| Self-Learning Material 
 

97 

UNIT – III 

Objectives: 

 To write modular and reusable code by defining functions that encapsulate specific 
tasks or operations. 

 To create scripts that interact with or automate tasks in graphical desktop 
environments, enhancing user productivity and system management. 

 To use sed and awk for powerful text processing, allowing for advanced 
manipulation and extraction of data from text files and streams. 

 

3.1 Creating Functions 

 A function is a collection of statements that execute a specified task. Its main goal 

is to break down a complicated procedure into simpler subroutines that can subsequently 

be used to accomplish the more complex routine. For the following reasons, functions are 

popular. 

 Assist with code reuse. 

 Enhance the program’s readability. 

 Modularize the software. 

 Allow for easy maintenance. 

 

Types of Functions 

 The functions in shell scripting can be boxed into a number of categories. The 

following are some of them: 

1. The functions that return a value to the caller. The return keyword is used by the functions 

for this purpose. 

 Function used to calculate the average of the given numbers. 

Example 

find_avg(){  

len=$# 

sum=0 

for x in "$@" 



 

 Periyar University – CDOE| Self-Learning Material 
 

98 

do 

sum=$((sum + x)) 

done 

avg=$((sum/len)) 

return $avg 

} 

find_avg 30 40 50 60 

printf "%f" "$?" 

printf "\n" 

Output 

 

 The functions that terminate the shell using the exit keyword. 

Example 

is_odd(){  

x=$1 

if [ $((x%2)) == 0 ]; then 

echo "Invalid Input" 

exit 1 

else 

 echo "Number is Odd" 

 fi 

} 

is_odd 64 

Output 

 

 The functions that alter the value of a variable or variables. 

 

 



 

 Periyar University – CDOE| Self-Learning Material 
 

99 

Example 

a=1 

increment(){  

a=$((a+1)) 

return 

} 

increment 

echo "$a" 

Output 

 

 The functions that echo output to the standard output. 

Example 

hello_world(){  

echo "Hello World" 

return 

} 

hello_world 

Output 

 

 

 

 

 

 

 

 



 

 Periyar University – CDOE| Self-Learning Material 
 

100 

Returning a value 

# Example: Bash function returns multiple values, passed via command substitution, 

#  with a READ command and Here string in calling script 

#!/usr/bin/env bash 

set -e #Stop on any errors 

function inside_function() { 

yvariable1="8" 

yvariable2="64" 

echo $yvariable1 $yvariable2 

} 

read -r ans1 ans2 <<< $(inside_function) 

echo "ans1 = $ans1" 

echo "ans2 = $ans2" 

 

OUTPUT 

ans1 = 8 

ans2 = 64 

Using variables in functions 

 A shell variable is a character string in a shell that stores some value. It could be an 

integer, filename, string, or some shell command itself.  

Rules for variable definition 

A variable name could contain any alphabet (a-z, A-Z), any digits (0-9), and an underscore 

( _ ).  

 Valid Variable Names 

ABC 

_AV_3 

AV232 

 Invalid variable names  

2_AN 

!ABD 

$ABC 

&QAID 

Variable Types 



 

 Periyar University – CDOE| Self-Learning Material 
 

101 

 There are three main types of variables: 

1) Local Variable 

 Variables which are specific to the current instance of shell. They are basically used 

within the shell, but not available for the program or other shells that are started from within 

the current shell. 

  

For example 

`name=Jayesh`     

In this case the local variable is (name) with the value of Jayesh. Local variables is 

temporary storage of data within a shell script. 

 

2) Environment Variable 

 These variables are commonly used to configure the behavior script and programs 

that are run by shell. Environment variables are only created once, after which they can be 

used by any user. 

For example 

`export PATH=/usr/local/bin:$PATH` would add `/usr/local/bin` to the beginning of the 

shell’s search path for executable programs. 

 

3) Shell Variables 

 Variables that are set by shell itself and help shell to work with functions correctly. It 

contains both, which means it has both, some variables are Environment variable, and 

some are Local Variables. 

For example 

`$PWD` = Stores working directory  

`$HOME` = Stores user’s home directory 

`$SHELL` = Stores the path to the shell program that is being used. 

 

Array and variable functions 

 Each value in an array is indexed starting from index 0 for the first value. It is almost 

similar to Shell Script but with a slight difference. The difference between an array and a 

Shell Script array is that it supports values of all data types. 

 

 



 

 Periyar University – CDOE| Self-Learning Material 
 

102 

 Two types of arrays in the shell script. 

 Associative Arrays: It contains Elements with key-value pairs. 

 Indexed Arrays: It contains Indexed Elements starting with zero. 

 Variable Assignment: To assign a value to a variable, you can use the equals sign 

(=). 

 my_variable="Hello, World!" 

 Variable Access: To access the value of a variable, you prefix it with a dollar sign 

($). 

echo $my_variable 

 Array Declaration: We can declare an array by using parentheses and storing 

values inside it. 

my_array=("apple" "banana" "cherry") 

 Access Array Elements: To access individual elements of an array, use the index 

inside square brackets. 

echo ${my_array[0]}  # Prints "apple" 

 Array Length: To get the number of elements in an array, use the # symbol. 

length=${#my_array[@]} 

echo "Array length: $length" 

 Loop through an Array: We can use a for loop to iterate through the elements of 

an array. 

for item in "${my_array[@]}"; do 

echo $item 

done 

 Adding Elements to an Array: We can add elements to an array using the += 

operator. 

my_array+=("grape") 

 Removing Elements from an Array: Use the unset command to remove an 

element from an array. 

unset my_array[1]  # Removes the second element (banana) 

 Check if a Variable is Set: Use the -v flag with if statements to check if a variable 

is set. 

if [ -v my_variable ]; then 

    echo "my_variable is set" 



 

 Periyar University – CDOE| Self-Learning Material 
 

103 

fi 

 Conditional Statements: We can use conditional statements like if, elif, and else to 

make decisions based on variable values. 

if [ $my_variable == "Hello" ]; then 

    echo "The variable is 'Hello'" 

elif [ $my_variable == "World" ]; then 

    echo "The variable is 'World'" 

else 

    echo "The variable is something else" 

fi 

Recursive functions 

 A recursive function is a function that calls itself from inside itself. This function is 

very useful when you need to call the function to do something again from inside of it. 

 

 To calculate the factorial of 4, you multiply the number by the descending numbers. 

You can do it like this: The ! sign means factorial. 

4! = 4*3*2*1 

Example 

#!/bash/bin 

factorial() 

{ 

  let n=$1 

  if (( "$n" <= "1" )) 

  then return 1 

  else 

  factorial n-1 

  return $n*$? 

  fi 

  return 0 

} 

factorial 5 

echo "factorial 5 = $?" 

 

 

 



 

 Periyar University – CDOE| Self-Learning Material 
 

104 

Creating a library 

 Shell Function Library is basically a collection of functions that can be accessed 

from anywhere in the development environment. It actually makes shell scripting a bit less 

tedious and repetitive. By creating a shell script with some functions defined in it, we can 

then access and call those functions from other files or scripts.  It helps in avoiding repeating 

the code in large files and complex scripts. 

 

Creating function library: 

#!/bin/bash 

function square(){ 

    v1=$1 

    n=$(($v1*$v1)) 

    echo $n 

} 

function expo(){ 

    v1=$1 

    v2=$2 

    n=$(($v1**$v2)) 

    echo $n 

} 

function factorial(){ 

    v1=$1 

    n=1 

    while [[ $v1 -gt 0 ]]; do 

    n=$(($n*$v1)) 

    v1=$(($v1 - 1)) 

done 

    echo $n 

} 

 

Using Functions From Library: 

 We need a place or file where we can use or utilize this function library. So we 

create a shell script to call these functions and use it to avoid repetitive tasks and code. 

 



 

 Periyar University – CDOE| Self-Learning Material 
 

105 

Example 

#!/bin/bash 

echo "4^6 = "$(expo 4 6) 

a=5 

echo "$a! = "$(factorial $a) 

b=18 

echo "$b^2 = "$(square $b) 

Output 

 

 

 

Using functions on the command line 

 Defining a Function: We can define a function using the function keyword or simply 

by using parentheses. 

 

Here's an example using both methods 

# Using the "function" keyword 

my_function() { 

    echo "Hello from my_function" 

} 

# Using parentheses 

another_function() { 

    echo "Hello from another_function" 

} 

 Calling a Function: We can call a function by its name, followed by parentheses. 

Example 

my_function 

another_function 

 

 Passing Arguments to Functions: We can pass arguments to functions by 

referencing them with $1, $2, and so on, inside the function. 

 



 

 Periyar University – CDOE| Self-Learning Material 
 

106 

Example 

greet() { 

    echo "Hello, $1!" 

} 

greet "Alice"  # Call the function with an argument 

 Returning Values from Functions: We can use the return statement to return a 

value from a function. 

 them with $1, $2, and so on, inside the function. 

Example 

add() { 

    result=$(( $1 + $2 )) 

    return $result 

} 

add 3 4  # Call the function to add two numbers 

sum=$?   # Get the return value 

echo "Sum is $sum" 

 

Using Functions on the Command Line:  

We can use functions on the command line by defining them in your shell script and then 

sourcing the script to make the functions available in your current shell session.  

For example, if you have a script named my_functions.sh with the functions. 

#!/bin/bash 

greet() { 

echo "Hello, $1!" 

} 

3.2 Writing Scripts for Graphical Desktops 

1. Desktop Environment: 

 Different desktop environments may have their own scripting languages or tools. For 

example: 

 GNOME: You can use GNOME Shell extensions with JavaScript or use the 

gsettings command to configure settings. 

 KDE Plasma: Plasma desktop uses QtScript, Python, and D-Bus for 

scripting. 

 Xfce: Xfce supports scripting with Xfce4-panel plugins, including Python. 



 

 Periyar University – CDOE| Self-Learning Material 
 

107 

 Unity: You can use Unity's API with Python or other scripting languages. 

2. Bash Script with GUI Libraries: 

 We can use Bash scripts in conjunction with GUI libraries like Zenity or Yad to create 

simple GUI dialogs or windows. These libraries allow you to display information, get 

user input, and provide a basic GUI for your script. 

 

3. Keyboard Shortcuts and Commands: 

 We can create shell scripts to automate tasks by assigning keyboard shortcuts to 

execute them. This can be done through the desktop environment's keyboard 

shortcut settings. 

 

4. Automating GUI Applications: 

 We can use tools like xdotool to automate interactions with GUI applications. For 

example, we can use xdotool to simulate mouse clicks, keyboard input, and window 

management. 

 

5. Desktop Configuration: 

 We can use shell scripts to manage desktop configurations, change wallpapers, set 

themes, and modify desktop-specific settings. 

 

6. Creating Custom Desktop Widgets or Applets: 

 Some desktop environments allow you to create custom widgets or applets that can 

be developed using specific scripting languages or libraries. 

 

Creating text menus 

 The select command to create a simple menu in the terminal. Then, the command 

displays a list of options preceded by numbers. Select repeatedly reads a number from 

standard input. Subsequently, if the number corresponds to a string's position in WORDS, 

the command sets NAME to the respective text. 

 

Steps included: 

1. Create a custom menu using echo statement and show the menu 

2. Create an infinite loop using while statement that accept the user input option and 

generate the output continuously until the user input matches the exit pattern. 



 

 Periyar University – CDOE| Self-Learning Material 
 

108 

3. Take input from the user using read statement and store it in a variable. 

4. Use case statement to check if the input matches with the pattern. 

5. Create custom pattern. 

6. Exit the case statement using esac keyword. 

 

Example 

#!/bin/bash 

# creating a menu with the following options 

echo "SELECT YOUR FAVORITE FRUIT"; 

echo "1. Apple" 

echo "2. Grapes" 

echo "3. Mango" 

echo "4. Exit from menu " 

echo -n "Enter your menu choice [1-4]: " 

# Running a forever loop using while statement 

# This loop will run until select the exit option. 

# User will be asked to select option again and again 

while : 

do 

# reading choice 

read choice 

# case statement is used to compare one value with the multiple cases. 

case $choice in 

  # Pattern 1 

  1)  echo "You have selected the option 1" 

      echo "Selected Fruit is Apple. ";; 

  # Pattern 2 

  2)  echo "You have selected the option 2" 

      echo "Selected Fruit is Grapes. ";; 

  # Pattern 3 

  3)  echo "You have selected the option 3" 

      echo "Selected Fruit is Mango. ";;     

  # Pattern 4 

  4)  echo "Quitting ..." 

      exit;; 



 

 Periyar University – CDOE| Self-Learning Material 
 

109 

  # Default Pattern 

  *) echo "invalid option";; 

  esac 

  echo -n "Enter your menu choice [1-4]: " 

done 

Output 

 

 

 

Building text window widgets 

 Install ‘dialog’ if it's not already installed 

 

On Debian/Ubuntu 

sudo apt-get install dialog 

On Red Hat-based systems: 

sudo yum install dialog 

Example of a shell script that creates a text window widget using ‘dialog’ 

#!/bin/bash 

# Function to display a text window 

show_text_window() { 

  local text_file="$1" 

  dialog --textbox "$text_file" 20 60 

} 

# Main script 



 

 Periyar University – CDOE| Self-Learning Material 
 

110 

text_file="example.txt" 

echo "This is the content of the text window." > "$text_file" 

show_text_window "$text_file" 

# Clean up the temporary text file 

rm -f "$text_file" 

 

Adding X Window graphics 

 Install X Window System: Most Linux distributions come with X11 pre-installed. 

However, if it's not installed, you can typically install it using your distribution's package 

manager. For example, on Debian-based systems like Ubuntu, 

Code: sudo apt-get install xorg 

 

 Start X Server: Once X11 is installed, you can start the X server by running the 

following command. 

Code: startx 

 This command will start the X server and bring up a minimal graphical environment 

with a terminal window. 

 

 Run Graphical Applications: You can run graphical applications from the terminal 

or a launcher. For example, you can run the file manager, text editor, or any other GUI 

application. Simply type the name of the application and press Enter. For instance: 

Code: 

nautilus   # To open the file manager (GNOME) 

gedit     # To open the text editor (GNOME) 

 

 Customize the Desktop Environment: Most Linux distributions offer various 

desktop environments like GNOME, KDE, Xfce, etc. You can choose a desktop 

environment that suits your preferences and install it. For example, to install the GNOME 

desktop environment, you can use: 

Code: 

sudo apt-get install gnome 

 

 

 Window Management: The X Window System provides various window 

management functions, such as moving, resizing, and closing windows. You can also 



 

 Periyar University – CDOE| Self-Learning Material 
 

111 

switch between different virtual desktops, manage workspaces, and more. The exact steps 

and keybindings for window management depend on the desktop environment you're 

using. 

 

 X Display Server Configuration: You can configure the X server using the Xorg 

configuration files. These files are usually located in the /etc/X11/ directory. You may need 

to customize these files to set display resolutions, input devices, or other hardware-specific 

settings. 

 

3.3 Introducing sed and gawk 

 Both ‘awk’ and ‘sed’ rely heavily on regular expressions to describe patterns in text 

upon which some operation should be performed. 

 

Common ‘sed’ Concepts and Examples 

‘sed’ (Stream Editor) 

 ‘sed’ is a stream editor that allows you to perform basic text transformations on an 

input stream (a file or input from a pipeline). It's often used for tasks like search and replace, 

text substitution, and basic text manipulation. 

 

 Search and Replace: You can use ‘s’ (substitute) command to search for a pattern 

and replace it with another. 

Code 

# Replace "old" with "new" in a file.txt 

sed 's/old/new/' file.txt 

 

 Delete Lines: You can use ‘d’ command to delete lines that match a pattern. 

Code 

# Delete lines containing "pattern" from file.txt 

sed '/pattern/d' file.txt 

 Print Specific Lines You can use line addresses to specify which lines to apply a 

command to. 

Code 

# Print lines 5 to 10 from file.txt 

sed -n '5,10p' file.txt 

 



 

 Periyar University – CDOE| Self-Learning Material 
 

112 

 Multiple Commands You can apply multiple ‘sed’ commands together by 

separating them with semicolons. 

Code 

# Replace "old" with "new" and delete lines containing "pattern" 

sed -e 's/old/new/' -e '/pattern/d' file.txt 

 

 ‘gawk’ (GNU Awk): ‘gawk’ is an enhanced version of the classic ‘awk’ utility. It's a 

text processing tool that allows you to process structured text data, typically in the form of 

records and fields. ‘gawk’ is particularly powerful for data extraction, manipulation, and 

reporting. 

 

Common ‘gawk’ Concepts and Examples 

Basic ‘gawk’ Usage: To use ‘gawk’ you typically specify a pattern-action pair. 

Code 

# Print the first field of each line 

gawk '{ print $1 }' file.txt 

 

Field Separators: By default, ‘gawk’ uses space as the field separator. You can change 

the field separator using the ‘–F’ option 

Code 

# Use ":" as the field separator 

gawk -F ':' '{ print $1, $3 }' file.txt 

 

Built-in Variables: ‘gawk’ provides many built-in variables, like ‘NF’ (number of fields) and 

‘NR’ (record number). 

Code 

# Print the line number and the number of fields 

gawk '{ print NR, NF }' file.txt 

 

Regular Expressions: We can use regular expressions in ‘gawk’ for pattern matching and 

more complex text processing tasks. 

Code 

# Print lines containing "pattern" anywhere in the text 

gawk '/pattern/ { print }' file.txt 

 



 

 Periyar University – CDOE| Self-Learning Material 
 

113 

Custom Functions: We can define custom functions in ‘gawk’ to perform complex 

operations on data. 

Code 

# Define a function and use it to process data 

gawk ' 

  function square(x) { 

    return x * x 

  } 

  { print square($1) }' file.txt 

 

Learning about the sed Editor 

 SED command in UNIX stands for stream editor and it can perform lots of functions 

on file like searching, find and replace, insertion or deletion. Though most common use of 

SED command in UNIX is for substitution or for find and replace. By using SED you can 

edit files even without opening them, which is much quicker way to find and replace 

something in file, than first opening that file in VI Editor and then changing it. 

 

 SED is a powerful text stream editor. Can do insertion, deletion, search and 

replace(substitution). 

 SED command in unix supports regular expression which allows it perform complex 

pattern matching. 

Syntax: 

sed OPTIONS... [SCRIPT] [INPUTFILE...]  

 

 Replacing or substituting string: Sed command is mostly used to replace the 

text in a file. The below simple sed command replaces the word “unix” with “linux” 

in the file. 

Syntax: 

$sed 's/unix/linux/' geekfile.txt 

Output 

linux is great os. unix is opensource. unix is free os. 

learn operating system. 

linux linux which one you choose. 

linux is easy to learn.unix is a multiuser os.Learn unix .unix is a powerful. 



 

 Periyar University – CDOE| Self-Learning Material 
 

114 

 Here the “s” specifies the substitution operation. The “/” are delimiters. The “unix” is 

the search pattern and the “linux” is the replacement string. 

 By default, the sed command replaces the first occurrence of the pattern in each 

line and it won’t replace the second, third…occurrence in the line. 

 

 Replacing the nth occurrence of a pattern in a line : Use the /1, /2 etc flags to 

replace the first, second occurrence of a pattern in a line. The below command 

replaces the second occurrence of the word “unix” with “linux” in a line. 

Syntax: 

$sed 's/unix/linux/2' geekfile.txt 

Output 

unix is great os. linux is opensource. unix is free os. 

learn operating system. 

unix linux which one you choose. 

unix is easy to learn.linux is a multiuser os.Learn unix .unix is a 

powerful. 

 Replacing all the occurrence of the pattern in a line: The substitute flag /g (global 

replacement) specifies the sed command to replace all the occurrences of the string 

in the line. 

Syntax: 

$sed 's/unix/linux/g' windowfile.txt 

Output 

linux is great os. linux is opensource. linux is free os. 

learn operating system. 

linux linux which one you choose. 

linux is easy to learn.linux is a multiuser os.Learn linux .linux is a 

powerful. 

 Replacing from nth occurrence to all occurrences in a line: Use the combination 

of /1, /2 etc and /g to replace all the patterns from the nth occurrence of a pattern in 

a line. The following sed command replaces the third, fourth, fifth… “unix” word with 

“linux” word in a line. 

Syntax: 

$sed 's/unix/linux/3g' windowfile.txt 

Output 

unix is great os. unix is opensource. linux is free os. 



 

 Periyar University – CDOE| Self-Learning Material 
 

115 

learn operating system. 

unix linux which one you choose. 

unix is easy to learn.unix is a multiuser os.Learn linux .linux is a powerful. 

 Parenthesize first character of each word: This sed example prints the first 

character of every word in parenthesis. 

Syntax: 

$ echo "Welcome To The Geek Stuff" | sed 's/\(\b[A-Z]\)/\(\1\)/g' 

Output 

(W)elcome (T)o (T)he (G)eek (S)tuff 

 Replacing string on a specific line number: You can restrict the sed command to 

replace the string on a specific line number.  

Syntax: 

$sed '3 s/unix/linux/' geekfile.txt 

Output 

unix is great os. unix is opensource. unix is free os. 

learn operating system. 

linux linux which one you choose. 

unix is easy to learn.unix is a multiuser os.Learn unix .unix is a 

powerful. 

 The above sed command replaces the string only on the third line. 

 Duplicating the replaced line with /p flag: The /p print flag prints the replaced line 

twice on the terminal. If a line does not have the search pattern and is not replaced, 

then the /p prints that line only once. 

Syntax: 

$sed 's/unix/linux/p' geekfile.txt 

Output 

linux is great os. unix is opensource. unix is free os. 

linux is great os. unix is opensource. unix is free os. 

learn operating system. 

linux linux which one you choose. 

linux linux which one you choose. 

linux is easy to learn.unix is a multiuser os.Learn unix .unix is a 

powerful. 

linux is easy to learn.unix is a multiuser os.Learn unix .unix is a 

powerful. 



 

 Periyar University – CDOE| Self-Learning Material 
 

116 

 Printing only the replaced lines: Use the -n option along with the /p print flag to 

display only the replaced lines. Here the -n option suppresses the duplicate rows 

generated by the /p flag and prints the replaced lines only one time. 

Syntax: 

$sed -n 's/unix/linux/p' geekfile.txt 

Output 

linux is great os. unix is opensource. unix is free os. 

linux linux which one you choose. 

linux is easy to learn.unix is a multiuser os.Learn unix .unix is a 

powerful. 

 If you use -n alone without /p, then the sed does not print anything. 

 Replacing string on a range of lines: You can specify a range of line numbers to 

the sed command for replacing a string. 

Syntax: 

$sed '1,3 s/unix/linux/' geekfile.txt 

Output 

linux is great os. unix is opensource. unix is free os. 

learn operating system. 

linux linux which one you choose. 

unix is easy to learn.unix is a multiuser os.Learn unix .unix is a 

powerful. 

 Here the sed command replaces the lines with range from 1 to 3.  

 Deleting lines from a particular file: SED command can also be used for 

deleting lines from a particular file. SED command is used for performing deletion 

operation without even opening the file 

Examples 

To delete a particular line say n in this example 

Syntax: $ sed 'nd' filename.txt 

Example:  

$ sed '5d' filename.txt 

To Delete a last line 

Syntax: 

$ sed '$d' filename.txt 

To Delete line from range x to y 

Syntax: $ sed 'x,yd' filename.txt 



 

 Periyar University – CDOE| Self-Learning Material 
 

117 

Example: 

$ sed '3,6d' filename.txt 

To Delete from nth to last line 

Syntax: $ sed 'nth,$d' filename.txt 

Example: 

$ sed '12,$d' filename.txt 

To Delete pattern matching line 

Syntax: $ sed '/pattern/d' filename.txt 

Example: 

$ sed '/abc/d' filename.txt 

 

Getting introduced to the gawk 

 gawk command in Linux is used for pattern scanning and processing language. 

The awk command requires no compiling and allows the user to use variables, numeric 

functions, string functions, and logical operators. It is a utility that enables programmers to 

write tiny and effective programs in the form of statements that define text patterns that are 

to be searched for, in a text document and the action that is to be taken when a match is 

found within a line.  

gawk command can be used to :  

 Scans a file line by line. 

 Splits each input line into fields. 

 Compares input line/fields to pattern. 

 Performs action(s) on matched lines. 

 Transform data files. 

 Produce formatted reports. 

 Format output lines. 

 Arithmetic and string operations. 

 Conditionals and loops. 

Syntax:  

gawk [POSIX / GNU style options] -f progfile [--] file ... 

gawk [POSIX / GNU style options] [--] 'program' file ... 

 

 

 

 

https://www.geeksforgeeks.org/awk-command-unixlinux-examples/


 

 Periyar University – CDOE| Self-Learning Material 
 

118 

Important Options:  

 -f progfile, –file=progfile: Read the AWK program source from the file program-

file, instead of from the first command line argument. Multiple -f (or –file) options 

may be used. 

 -F fs, –field-separator=fs: It uses FS for the input field separator (the value of the 

FS predefined variable). 

 -v var=val, –assign=var=val: Assign the value val to the variable var, before 

execution of the program begins. 

 

 

Examples:  

 -F: It uses FS for the input field separator (the value of the FS predefined variable).  

 gawk -F: '{print $1}' /etc/passwd 

 

 -f: Read the AWK program source from the file program-file, instead of from the first 

command line argument. Multiple -f (or –file) options may be used. 

 gawk -F: -f mobile.txt /etc/passwd 



 

 Periyar University – CDOE| Self-Learning Material 
 

119 

 

Built In Variables:  

 NR: It keeps a current count of the number of input line. 

 NF: It keeps a count of the number of fields within the current input record. 

 FS: It contains the field separator character which is used to divide fields on the 

input line. 

 RS: It stores the current record separator character. 

 OFS: It stores the output field separator, which separates the fields when Awk 

prints them. 

 ORS: It stores the output record separator, which separates the output lines 

when Awk prints them. 

 

Examples 

NR: gawk '{print NR "-" $1 }' mobile.txt 

 

 

 

 

 



 

 Periyar University – CDOE| Self-Learning Material 
 

120 

 

 

 RS: gawk 'BEGIN{FS=":"; RS="-"} {print $1, $6, $7}' /etc/passwd 

 

 

 

 OFS: gawk 'BEGIN{FS=":"; OFS="-"} {print $1, $6, $7}' /etc/passwd 

 

 

 

 

 

 

 

 



 

 Periyar University – CDOE| Self-Learning Material 
 

121 

Exploring sed Editor basics 

 The Sed command is a powerful tool in the Linux and Unix operating systems that 

is used for streamlining text processing. Sed, short for Stream EDitor, can be used to 

search, delete, insert, or replace characters within a file or multiple files with minimal effort. 

Basic ‘sed’ Syntax: 

The basic syntax for ‘sed’ is as follows: 

Example 

sed [options] 'command' inputfile 

 ‘Options’: These are optional and can modify the behavior of ‘sed’. Some common options 

include ‘-I’ (in-place edit), ‘-n’ (suppress automatic printing), and others. 

 'Command': This is the ‘sed’ command you want to execute. 

 ‘Inputfile’: This is the file you want to process. If you omit it, ‘sed’ will read from standard 

input. 

  

Common ‘sed’ Commands 

Search and Replace: The ‘s’ (substitute) command is used to search for a pattern and 

replace it with another. 

Code: sed 's/old/new/' inputfile 

 This command replaces the first occurrence of "old" with "new" on each line. 

Global Search and Replace 

 To replace all occurrences of a pattern on each line, use the ‘g’ flag. 

Code: sed 's/old/new/g' inputfile 

Using Regular Expressions: 

 We can use regular expressions in ‘sed’ to match more complex patterns. For 

example, to replace "apple" or "apples" with "fruit": 

Code: sed 's/apple[s]*$/fruit/g' inputfile 

Delete Lines 

 The ‘d’ command is used to delete lines that match a pattern: 

Code: sed '/pattern/d' inputfile 

Print Specific Lines 

 Use the ‘-n’ option to suppress automatic printing and the ‘p’ command to print 

specific lines 

Code: sed -n '5,10p' inputfile 

 

 



 

 Periyar University – CDOE| Self-Learning Material 
 

122 

Multiple Commands 

 You can combine multiple ‘sed’ commands using semicolons. For example, 

replacing and then deleting lines. 

Code: sed -e 's/old/new/' -e '/pattern/d' inputfile 

 

In-Place Editing 

 To edit a file in-place (i.e., save changes to the original file), you can use the ‘-I’ 

option. Be cautious when using this option, as it will overwrite the input file. Always make a 

backup before using it. 

Code: sed -i 's/old/new/' inputfile 

A few examples of common ‘sed’ operations 

 Replace all occurrences of "cat" with "dog" in a file and save the changes: 

Code: sed -i 's/cat/dog/g' myfile.txt 

 Delete lines containing the word "apple" from a file: 

Code: sed -i '/apple/d' myfile.txt 

 Print lines between lines that match "start" and "end": 

Code: sed -n '/start/,/end/p' myfile.txt 

 

Let us sum up 

The sed editor writes to a destination file only the data lines that contain the text 

pattern. 

The case command should call the appropriate function according to the character 

selec- tion expected from the menu. It’s always a good idea to use the default case 

command character (the asterisk) to catch any incorrect menu entries. 

 

Check your progress 

1. What is the correct syntax for defining a function in bash?*   

A) function name { ... }    B) def name { ... }   

C) func name { ... }    D) function name = { ... } 

2. How do you return a value from a function in bash?*   

A) return value   B) exit value   C) output value   D) echo value 



 

 Periyar University – CDOE| Self-Learning Material 
 

123 

3. How do you access a variable defined outside a function inside the function in 

bash?*   

A) By using the global keyword    B) By using the extern keyword   

C) Variables are automatically accessible  D) By passing the variable as a 

parameter 

 

4. How do you define an array in bash?*   

A) array = (value1 value2 value3)    B) array = [value1, value2, value3]   

C) array = {value1, value2, value3}   D) array = <value1, value2, value3> 

 

5. Which statement is true about recursion in bash functions?*   

A) Bash does not support recursion.   

B) Recursion is supported but can lead to a stack overflow if not managed carefully.   

C) Recursion is the only way to loop in bash.   

D) Recursion is faster than iteration in bash. 

 

6. How do you include a library file in a bash script?*   

A) include "library.sh"     B) source library.sh   

C) import library.sh     D) use library.sh 

7. Can you define and use functions directly from the bash command line?*   

A) Yes    B) No 

 

8. Which command is commonly used to create text menus in a bash script?*   

A) menu   B) select    C) choose    D) options 

 

9. Which tool can be used to create graphical dialogs in bash scripts?*   

A) dialog    B) zenity    C) yad   D) All of the above 

 



 

 Periyar University – CDOE| Self-Learning Material 
 

124 

10. Which toolkit is commonly used for adding X Window graphics in bash scripts?*   

A) GTK    B) QT    C) Xlib   D) All of the above 

 

11. What is the primary use of the sed command in bash?**   

A) Text editing     B) File compression   

C) Network management    D) Package installation 

 

12. What does gawk stand for?**   

A) GNU AWK   B) General AWK   C) Global AWK   D) Graphical AWK 

 

13. How do you use sed to replace the first occurrence of "foo" with "bar" in a file?**   

A) sed 's/foo/bar/' filename     B) sed 'r/foo/bar/' filename   

C) sed 'c/foo/bar/' filename     D) sed 't/foo/bar/' filename 

 

 

Here are the answers: 

1. A)    2. A)     3. C)      4. A)       5. B)        6. B)      7. A)      8. B)       9. D)  

10. D)       11. A)       12. A)         13. A)  

 

Self  assessment questions 

1. How to defining sed editor command in command line. Give an example. 

2. Difference between Array and variable function. 

3. What is function recursion with example? 

4. How to creating a library and using functions on command line. 

5. Explain in detailed about sed and gawk commands with examples. 

6. Write a shell script program to create a following GUI tools. 

 Creating text menu 

 Building text window widget 

7. How to use edit command at the sed editor. 



 

 Periyar University – CDOE| Self-Learning Material 
 

125 

8. Write about functions and arrays in Linux. 

9. Explain about adding color to scripts layout and the functions. 

 

Open source e-content links 

https://www.tutorialspoint.com/unix/unix-shell-functions.htm 

https://www.geeksforgeeks.org/function-command-in-linux-with-examples/ 

https://www.geeksforgeeks.org/introduction-to-graphical-user-interface-of-redhat-

linux-operating-system/ 

 

Glossary 

sed is a powerful stream editor used for filtering and transforming text. 

 

sed: The command itself to invoke the stream editor. 

 

Usage: sed [options] 'script' [file] 

s/pattern/replacement/: Substitutes replacement for pattern. 

 

Usage: sed 's/old/new/' file 

g: Applies substitution globally on each line (i.e., all occurrences). 

 

Usage: sed 's/old/new/g' file 

i\: Inserts a line before the matched pattern. 

 

Usage: sed '/pattern/i\text to insert' file 

a\: Appends a line after the matched pattern. 

 

Usage: sed '/pattern/a\text to append' file 

d: Deletes lines that match a pattern. 

 

Usage: sed '/pattern/d' file 

p: Prints lines that match a pattern. 

 



 

 Periyar University – CDOE| Self-Learning Material 
 

126 

Usage: sed -n '/pattern/p' file 

-e: Allows multiple commands to be executed. 

 

Usage: sed -e 'command1' -e 'command2' file 

-n: Suppresses automatic printing of pattern space (use with p for controlled output). 

 

Usage: sed -n 'p' file 

-f: Reads sed commands from a file. 

 

awk is a powerful programming language for pattern scanning and processing. 

  

awk: The command to invoke the AWK programming language. 

 

Usage: awk [options] 'program' [file] 

{}: Denotes an action block in an awk program. 

 

Usage: awk '{print $1}' file 

$n: Represents the nth field in a record (default delimiter is whitespace). 

 

Usage: awk '{print $1, $3}' file 

BEGIN: Block executed before any input is processed. 

 

Usage: awk 'BEGIN {print "Start"} {print $1}' file 

END: Block executed after all input is processed. 

 

Usage: awk '{print $1} END {print "End"}' file 

/pattern/: Selects records that match a pattern. 

 

Usage: awk '/pattern/ {print $1}' file 

print: Outputs text or variables. 

 

Usage: awk '{print $1, $2}' file 

FS: Field Separator, sets the delimiter for fields. 

 

Usage: awk 'BEGIN {FS=","} {print $1}' file 



 

 Periyar University – CDOE| Self-Learning Material 
 

127 

OFS: Output Field Separator, sets the delimiter for output fields. 

 

Usage: awk 'BEGIN {OFS="\t"} {print $1, $2}' file 

NR: Built-in variable representing the current record number. 

 

Usage: awk '{print NR, $0}' file 

NF: Built-in variable representing the number of fields in the current record. 

 

e-books 

1.Linux Desktop Hacks: Tips & Tools for Customizing and Optimizing Your Desktop" by 

Kyle Rankin 

2.KDE 4.0: Using the KDE Desktop Environment" by David F. Swersky 

 



 

128 
 

 

UNIT – IV 

Objectives: 

 Utilize regular expressions (regex) to perform complex pattern matching, search, 
and text manipulation tasks efficiently. 

 Master advanced sed features to perform sophisticated text processing tasks, 
such as multi-line editing, complex substitutions, and script-based manipulations. 

 Leverage advanced features of gawk to perform sophisticated data processing, 
reporting, and text manipulation tasks. 

 

4.1 Regular Expressions 

Regexps are acronyms for regular expressions. Regular expressions are special 

characters or sets of characters that help us to search for data and match the complex 

pattern. Regexps are most commonly used with the Linux commands:- grep, sed, tr, vi. 

 

S 

no 
Symbol Description 

1 . 
It is called a wild card character; It matches any one character other 

than the new line. 

2 ^ It matches the start of the string. 

3 $ It matches the end of the string. 

4 * 
It matches up to zero or more occurrences i.e. any number of times 

of the character of the string. 

5 \ It is used for escape following character. 

6 () It is used to match or search for a set of regular expressions. 

7 ? It matches exactly one character in the string or stream. 

 

 

 

 

 

 

 



 

129 
 

 Using “.” (dot) to match strings. 

Using “.” we can find a string if we do not know the exact string, or we just remember 

only the start and end of the string, we can use “.” As a missing character, and it will fill 

that missing character. Let’s see an example for better understanding:’ File contains the 

fruit’s name, and we are going to use regular expressions on this file. 

Script 

#!/bin/sh 

# Basic Regular Expression 

# 1. Using “.” to match strings. 

# loading the text file fruits_file=`cat fruit.txt | grep App.e` 

# here the original (answer) word will be Apple, 

# but because we don’t know the spelling of the Apple, 

# will put a dot (.) in that place. 

echo “1. Using ‘.’ to find the original word, whereas given word is ‘App.e'” 

# displaying output 

echo “Output:” 

echo “$fruits_file” 

Output 

 

 

 Using “^” (caret) to match the beginning of the string 

Using “^”, we can find all the strings that start with the given character. Example for 

a better understanding. Here we are trying to find all the fruit names that start with 

the  letter B: 

Script 

#!/bin/sh 

# Basic Regular Expression 

# 2. Using “^” (caret) to match the beginning of the string 

# loading the text file 

 

 



 

130 
 

fruits_file=`cat fruit.txt | grep ^B` 

echo “2. Using ‘^’ to find out all the words that start with the letter ‘B'” 

# displaying output 

echo “Output:” 

echo “$fruits_file” 

Output 

 

 

 

 

 Using “$” (dollar sign) to match the ending of the string 

Using “$” we can find all the strings that end with the given character. Example for a 

better understanding. Here we are trying to find all the fruit’s names that end with the 

letter e: 

Script 

#!/bin/sh 

# Basic Regular Expression 

# 3. Using “$” (dollar) to match the ending of the string 

# loading the text file 

fruits_file=`cat fruit.txt | grep e$` 

echo “3. Using ‘$’ to find out all the words that end with the letter ‘e'” 

# displaying output 

echo “Output:” 

echo “$fruits_file” 

 

 

 

 

 



 

131 
 

Output 

 

 

 

 Using “*” (an asterisk) to find any number of repetitions of a string 

Using “*”, we can match up to zero or more occurrences of the character of the 

string. Example for a better understanding. Here we are trying to find all the fruit’s names 

that 

has one or more occurrences of ‘ap’ one after another in it. 

 

Script 

#!/bin/sh 

# Basic Regular Expression 

# 4. Using “*” to find any number of repetition of a string 

# loading the text file 

fruits_file=`cat fruit.txt | grep ap*le` 

echo “4. Using ‘*’ to find out all the fruits name that has one or more 

occurrence of ‘ap’ one after another in it” 

# displaying output 

echo “Output:” 

echo “$fruits_file” 

 

 

 

 

 

 



 

132 
 

Output 

 

 

 

 

 Using “\” (a backslash) to match the special symbol 

Using “\” with special symbols like whitespace (” “), newline(“\n”), we can find strings 

from the file. Example for a better understanding. Here we are trying to find all the fruit’s 

names that have space in their full names. 

Script 

#!/bin/sh 

# Basic Regular Expression 

# 5. Using “\” to match the special symbol 

# loading the text file 

fruits_file=`cat fruit.txt | grep  “\ “` 

echo “5. Using ‘\’ to find out all the fruits name that has single space in 

their full name” 

# displaying output 

echo “Output:” 

echo “$fruits_file” 

Output 

 

 

 Using “()” (braces) to match the group of regexp. 



 

133 
 

Using “()”, we can find matched strings with the pattern in the “()”. Example for a 

better understanding. Here we are trying to find all the fruit’s names that have space in 

their full name. 

Script 

#!/bin/sh 

# Basic Regular Expression 

# 6. Using “()” (braces) to match the group of regexp. 

# loading the text file 

fruits_file=`cat fruit.txt | grep -E “(fruit)”` 

echo “6. Using ‘()’ to find out all the fruits name that has word ‘fruit’ in it” 

# displaying output 

echo “Output:” 

echo “$fruits_file” 

 

 

 

Output 

 

 

 

 

 

 

 Using “?”(question mark) to find all the matching characters 

Using “?”, we can match 0 or 1 repetitions of the preceding. It will match either ‘a’ or 

‘ab’. Example for better understanding. Here we are trying to find all the fruit’s names 

that have the character ‘Ch’ in them.  



 

134 
 

 

Script 

#!/bin/sh 

# Basic Regular Expression 

# 7. Using “?”(question mark) to match the   

# loading the text file 

fruits_file=`cat fruit.txt | grep -E Ch?` 

echo “7. Using ‘?’ to find out all the fruits name that has ‘Ch’ in it” 

# displaying output 

echo “Output:” 

echo “$fruits_file” 

Output 

 

 

Extending our patterns 

 Wildcards: Wildcards are characters used to match patterns in filenames. 

Common wildcards include: 

 * (asterisk): Matches any sequence of characters. 

 ? (question mark): Matches any single character. 

 [ ] (square brackets): Matches any character within the specified range 

or set. 

 

 

Example 

To match all files with a .txt extension in a directory, we can use the wildcard 

*.txt. 



 

135 
 

 Regular Expressions: Regular expressions (regex or regexp) are powerful tools 

for pattern matching in text. We can use them with tools like grep, sed, and awk.  

 grep can be used to search for patterns within files or text streams. Script: 

grep 'pattern' file.txt  

 sed can be used to search and replace patterns in text  

Script: sed 's/pattern/replacement/g' file.txt  

 awk is a versatile text processing tool that can be used to work with 

structured data. It supports regular expressions for pattern matching. 

 Brace Expansion: Brace expansion is used to generate strings by specifying a 

range or list of values inside curly braces. For example, you can generate a list 

of file names with different extensions. Script: echo file.{txt,md,csv}  

 Extended Globbing: Some shells, such as Bash, support extended globbing 

patterns for more advanced matching. You can enable this feature using shopt 

-s extglob. With extended globbing, you can do things like matching files based 

on specific patterns or excluding certain patterns. For example, to list all files 

except those ending in .bak: Script: shopt -s extglob ls !(*.bak)  

 Combining Patterns: You can combine patterns using logical operators, such as 

&& (and) and || (or), to create more complex matching conditions. For example, 

you can list files that are either .txt or .md files: Script: ls *.txt || ls *.md. 

 Parameter Expansion: Shell scripts also allow for parameter expansion, which 

can be used to manipulate variables and strings. For example, you can extract a 

substring from a variable. Script: text="Hello, World" echo ${text:0:5}  

Output  

"Hello"  

 Custom Functions: In shell scripting, you can create custom functions to extend 

your pattern matching and manipulation capabilities. These functions can be 

used to encapsulate complex logic and make your scripts more modular and 

readable. 

 

 

 

Creating expressions 

The expr command in Unix evaluates a given expression and displays its 

corresponding output. It is used for: 



 

136 
 

 Basic operations like addition, subtraction, multiplication, division, and modulus 

on integers. 

 Evaluating regular expressions, string operations like substring, length of strings 

etc. 

Syntax: $expr expression 

Using expr for basic arithmetic operations: 

Example: Addition 

$expr 12 + 8  

Example: Multiplication 

$expr 12 \* 2 

Output  

 

Performing operations on variables inside a shell script 

Example: Adding two numbers in a script 

echo "Enter two numbers" 

read x  

read y 

sum=`expr $x + $y` 

echo "Sum = $sum" 

 

 

 

 

 

 



 

137 
 

Output 

 

 

 

Comparing two expressions 

Example 

x=10 

y=20 

# matching numbers with '=' 

res=`expr $x = $y` 

echo $res 

# displays 1 when arg1 is less than arg2 

res=`expr $x \< $y` 

echo $res 

# display 1 when arg1 is not equal to arg2 

res=`expr $x \!= $y` 

echo $res 

Output  

 

 

 

 



 

138 
 

For String operations 

Example: Finding length of a string 

x=geeks 

len=`expr length $x` 

echo $len 

Output  

 

 

Finding substring of a string 

x=geeks 

sub=`expr substr $x 2 3`  

#extract 3 characters starting from index 2 

echo $sub 

 

 

 

Output 

 

 

 

 

 

 

 

 



 

139 
 

4.2 Advanced sed 

1. Search and Replace: sed is commonly used for search and replace operations 

using these command, we can replace occurrences of a pattern with another 

string.  

Script: sed 's/old_pattern/new_pattern/g' input.txt  

 

2. Using Regular Expressions: sed supports regular expressions for pattern 

matching. This allows you to perform complex substitutions.  Example: to replace 

all email addresses in a file with "EMAIL_HIDDEN": 

Script: sed 's/[A-Za-z0-9._%+-]\+@[A-Za-z0-9.-]\+\.[A-Za-

z]\{2,\}/EMAIL_HIDDEN/g' input.txt  

 

3. In-Place Editing: To edit a file in-place, use the -i option. This allows you to save 

the changes back to the original file: 

Script: sed -i 's/old_pattern/new_pattern/g' input.txt  

 

4. Deleting Lines: sed can delete lines that match a pattern. For example, to delete 

all lines containing the word "DELETE": 

Script: sed '/DELETE/d' input.txt  

 

5. Inserting and Appending Text: An insert or append text before or after specific 

lines. For example, to add a line at the beginning of a file: 

Script: sed '1i This is the first line' input.txt  

 

6. Using Capture Groups: Capture groups allow you to extract and rearrange 

parts of the matched pattern. For example, to swap first and last names in a list: 

Script: sed 's/\(.*\), \(.*\)/\2 \1/g' names.txt  

 

7. Multiple Operations: Chain multiple sed operations together by separating 

them with semicolons. For instance, to replace multiple patterns in one pass: 

Script: sed -e 's/pattern1/replacement1/g' -e 's/pattern2/replacement2/g' 

input.txt  

 

 

 



 

140 
 

 

8. Using Variables: Use shell variables within your sed commands, making your 

scripts more dynamic. For example, using a variable to store the replacement 

text: 

Script: replacement="new_value" sed "s/old_value/$replacement/g" input.txt  

 

9. Conditional Editing: Conditionally edit lines based on patterns or line numbers. 

For example, to replace a line only if it matches a specific pattern: 

Script: sed '/pattern/s/old/new/' input.txt  

 

10. Script Files: For complex operations, you can store sed commands in a 

separate script file and execute it with the -f option: 

Script: sed -f myscript.sed input.txt  

 

11. Escape Special Characters: If you need to match or replace special characters 

(e.g., /, &, or ^), make sure to escape them with backslashes in your sed 

command. 

 

Using multiline commands 

 Use a single ampersand (&) or two ampersands (&&) to separate multiple 

commands on one command line. 

There are 3 ways to run multiple shell commands in one line: 

 Use ; 

 No matter the first command cmd1 run successfully or not, always run the second 

command cmd2: 

Script: 

# cmd1; cmd2 

$ cd myfolder; ls   # no matter cd to myfolder successfully, run ls 

 Use && 

 Only when the first command cmd1 run successfully, run the second command 

cmd2: 

Script: 

# cmd1 && cmd2 

$ cd myfolder && ls  # run ls only after cd to myfolder 

 



 

141 
 

 

 Use || 

 Only when the first command cmd1 failed to run, run the second command cmd2: 

Script: 

# cmd1 || cmd2 

$ cd myfolder || ls  # if failed cd to myfolder, `ls` will run 

 

 

Understanding the hold space 

 The Hold command puts a newline in the hold space and then appends the 

current line to the hold space. Even when the hold space is empty, the Hold command 

places a newline before the contents of the pattern space. The exchange command ( x 

) swaps the contents of the hold space and the pattern space. 

 

 Sed has two types of internal storage space: 

 Pattern space: In which is used as part of the typical sed execution flow. Pattern 

space is the internal sed buffer where sed places, and modifies, the line it reads 

from the input file. 

 Hold space: This is an additional buffer available where sed can hold temporary 

data. Sed allows you to move data back and forth between pattern space and 

hold space, but you cannot execute the typical sed commands on the hold space. 

Pattern space gets deleted at the end of every cycle in a typical sed execution 

flow. However, the content of the hold space will is retained from one cycle to the 

next; it is not deleted between cycles. 

To create a new text file to be used for the sed hold space examples: 

Example 

$ vi empnametitle.txt 

John 

CEO 

Jason Smith 

IT Manager 

Raj Reddy 

Sysadmin 

 

Anand Ram 



 

142 
 

Developer 

Jane Miller 

Sales Manager 

 ‘H’ command: We can use the ‘H’ command to copy the current pattern space 

(line) into the hold space.  

Example 

sed 'h' file.txt 

 ‘h’ command: The ‘H’ command appends the current pattern space to the hold 

space, separated by a newline character. This can be useful for accumulating 

lines in the hold space. 

Example 

sed 'H' file.txt 

 ‘g’ command: To copy the contents of the hold space back into the pattern 

space, we can use the ‘g’ command. This allows you to retrieve the stored text 

and work with it in your script. 

Example 

sed 'h;g' file.txt 

 ‘g’ command: The ‘G’ command appends the contents of the hold space to the 

pattern space, separated by a newline character. This is useful when you want 

to combine the stored text with the current line. 

Example 

sed 'h;G' file.txt 

 Clearing the hold space: We can clear the hold space using the ‘x’ command. 

Example 

sed 'h;x' file.txt 

 

Negating a command 

 In Bash, you can negate a condition using the "!" operator. We can negate the 

result of any command or condition with the "!" operator. It's also worth noting that you 

can use [[...]] instead of [...] for string and numeric comparison. 

Example 

if [ ! "$x" -eq 5 ] 

then 

 

echo "x is not equal to 5" 



 

143 
 

fi 

 You can also negate a string comparison using the "!" − 

if [ ! "$s" = "hello" ] 

then 

echo "s is not equal to hello" 

fi 

You can negate the result of any command or condition with the "!" operator. 

Example 

if [[ "$x" != 5 ]] 

then 

echo "x is not equal to 5" 

fi 

It's also worth noting that you can use [[...]] instead of [...] for string and numeric 

comparison. 

 

Changing the flow 

 Conditional Statements (if-else-fi): Conditional statements are used to make 

decisions in your script based on specific conditions. 

Example 

if [ $num -gt 10 ]; then 

echo "Number is greater than 10" 

else 

echo "Number is not greater than 10" 

fi 

 Case Statements (case-esac): Case statements are used when you have 

multiple conditions to test against a variable. It is similar to a switch statement in 

other programming languages. 

Example 

case $choice in 

"1")  

echo "You chose option 1" 

;; 

"2")  

 

 



 

144 
 

echo "You chose option 2" 

;; 

*) 

echo "Invalid choice" 

;; 

 Loops (for, while, until): Loops are used for repetitive tasks. we can use ‘for’, 

‘while’, and ‘until’ loops to execute a block of commands multiple times. 

 For Loop 

Example 

for var in list; do  

# commands to execute for each item in the list  

Done. 

 While Loop 

Example 

while [ condition ]; do 

# commands to execute as long as the condition is true 

Done 

 Until Loop 

Example 

until [ condition ]; do 

# commands to execute until the condition becomes true 

Done 

 Break and Continue: Inside loops, you can use ‘break’ to exit the loop 

prematurely and ‘continue’ to skip the current iteration and move to the next 

one. 

Example 

for i in {1..10}; do 

if [ $i -eq 5 ]; then 

break  # exit the loop when i is 5 

fi 

echo "Iteration: $i" 

done 

 

 

 



 

145 
 

Replacing via a pattern 

 Using ‘sed’: ‘sed’ (stream editor) is a powerful tool for text manipulation, 

including text replacement using patterns.  

 ‘pattern’: This is the regular expression pattern you want to search for in the 

input. 

 ‘replacement’: This is the text you want to replace the matched pattern with. 

 ‘g’: This is an optional flag that tells ‘sed’ to replace all occurrences of the pattern 

in each line. If you omit it, ‘sed’ will replace only the first occurrence in each line. 

Example of using ‘sed’ to replace "oldtext" with "newtext" in a file: 

sed 's/oldtext/newtext/g' input.txt > output.txt 

 To edit the file in-place without creating a new file, you can use the ‘-i’ flag: 

sed -i 's/oldtext/newtext/g' input.txt 

 Using ‘awk’: awk is another versatile tool for text manipulation, and it can be 

used to replace text based on patterns.  

Syntax 

awk '{gsub(/pattern/, "replacement")}1' inputfile > outputfile 

 ‘pattern’: This is the regular expression pattern you want to search for. 

 ‘replacement’: This is the text you want to replace the matched pattern with. 

Example of using ‘awk’ to replace "oldtext" with "newtext" in a file: 

awk '{gsub(/oldtext/, "newtext")}1' input.txt > output.txt 

 Using Shell String Manipulation: 

 For simple replacements within a shell script, we can use parameter expansion 

Example 

string="This is the old text" 

newstring="${string/old text/new text}" 

echo "$newstring" 

 

Using sed in Scripts 

 The Linux sed command is most commonly used for substituting text. It searches 

for the specified pattern in a file and replaces it with the wanted string. To replace text 

using sed , use the substitute command s and delimiters (in most cases, slashes - / ) 

for separating text fields. 

 



 

146 
 

 

 

Creating sed utilities 

 SED command in UNIX stands for stream editor and it can perform lots of 

functions on file like searching, find and replace, insertion or deletion. Though most 

common use of SED command in UNIX is for substitution or for find and replace. 

Here's a general outline of how to create a custom ‘sed’ utility: 

 Define the pattern to match: Start by defining the regular expression pattern 

that you want to match in the input text. 

 Specify the replacement text: Determine the text that you want to replace the 

matched pattern with. 

 Use s command: Within your custom ‘sed’ script, use the s command to 

perform the substitution.  

 

Syntax: sed -e 's/pattern/replacement/g' inputfile 

 ‘pattern’: This is the regular expression pattern to match. 

 ‘replacement’: This is the text with which you want to replace the matched 

pattern. 

 ‘g’: An optional flag to replace all occurrences in each line. Omitting it replaces 

only the first occurrence in each line. 

 Execute the custom sed script: Run your ‘sed’ script with the ‘-e’ option and 

provide the input file you want to process. 

  

Example of creating a custom ‘sed’ utility that replaces all occurrences of "apple" with 

"banana" in a text file. 

sed -e 's/apple/banana/g' input.txt 

 

 

 

 

 



 

147 
 

Creating More Complex sed Utilities 

 For more complex ‘sed’ utilities, you can combine multiple ‘sed’ commands 

and use control flow constructs. For example, you can use ‘if’ conditions and ‘b’ 

(branch) commands to perform different substitutions based on conditions. 

Example of a custom ‘sed’ utility that replaces "apple" with "banana" but only if the 

line starts with "fruit:": 

sed -e '/^fruit:/s/apple/banana/g' input.txt 

 

4.3 Advanced gawk 

 Regular Expressions: Gawk, like Awk, supports regular expressions. You can 

use regular expressions to pattern match and extract specific data from text files.  

Example: gawk '/pattern/ { print $2 }' file.txt  

 Advanced Field Separators: Gawk allows you to set custom field separators 

with the -F option. This is useful when working with files that have delimiters other 

than spaces or tabs. For instance, to process a file with a semicolon delimiter: 

Example: gawk -F ';' '{ print $2 }' file.txt  

 

 Built-in Functions: Gawk provides numerous built-in functions for text and 

numeric operations. You can use functions like split(), substr(), length(), and 

sprintf() to manipulate data. For example, you can split a field into an array: 

Example: gawk '{ split($3, arr, "-"); print arr[2] }' file.txt  

 

 User-Defined Functions: Gawk allows you to create your own functions for 

custom data processing. This can make your scripts more modular and 

maintainable. Here's an example of defining and using a custom function: 

Example: gawk 'function myfunc(x) { return x * 2 } { print myfunc($1) }' 

file.txt  

 

 Arrays: Gawk supports arrays, which are useful for storing and processing data. 

You can use arrays to aggregate and analyze data from a file: 

Example: gawk '{ count[$1]++ } END { for (key in count) print key, 

count[key] }' file.txt  

 

 



 

148 
 

 Control Structures: Gawk supports control structures like if-else and while 

loops, allowing you to perform conditional operations and iterative tasks within 

your scripts. 

 

 Output Formatting: Gawk offers extensive control over the formatting of output. 

You can use the printf function to format and display data in a specific way. 

Example: gawk '{ printf("Name: %s, Age: %d\n", $1, $2) }' file.txt  

 

 Reading Multiple Files: Gawk can process multiple files and perform actions 

separately on each file. Use the ARGIND variable to identify the current file 

being processed. 

Example: gawk '{ print "File:", ARGIND, "Line:", NR, $0 }' file1.txt file2.txt  

 

 Advanced Data Processing: Gawk is capable of more advanced data 

processing tasks, such as calculating statistics, parsing structured data formats, 

and generating reports. 

 

 Error Handling: Gawk provides error handling mechanisms, allowing you to 

handle and report errors gracefully within your scripts. 

 

Reexamining gawk 

 Built-in Variables: Gawk provides a variety of built-in variables to help you work 

with your data: 

 NF represents the number of fields in the current record. 

 NR indicates the current record number. 

 FS is the input field separator (default is whitespace). 

 OFS is the output field separator (used when printing fields). 

 RS is the input record separator (default is a newline). 

 ORS is the output record separator (used when printing records). 

 

 

 

 Pattern Matching: Gawk uses regular expressions for pattern matching, 

allowing you to search for specific text patterns within your data. we can use 

regular expressions to match and process data selectively. 



 

149 
 

 

 Control Structures: Gawk supports conditionals (‘if’, ‘else’,’else if’) and loops 

(‘while, for’) for controlling the flow of your data processing. We can use these 

control structures to perform complex logic within your scripts. 

 

 Functions: Gawk provides a rich set of built-in functions for both text and 

numeric operations. 

 gsub(): Global substitution of text. 

 index(): Find the position of a substring in a string. 

 length(): Determine the length of a string. 

 split(): Split a string into an array based on a delimiter. 

 substr(): Extract a substring from a string. 

 system(): Run shell commands from within an awk script. 

 

 User-Defined Functions: We can define your own custom functions in Gawk, 

which makes your scripts more modular and easier to maintain. 

 

 Arrays: Gawk supports arrays, both indexed and associative. This is useful for 

aggregating data, creating data structures, and performing more advanced data 

processing tasks. 

 

 BEGIN and END Blocks: Gawk allows you to specify actions to be taken before 

processing begins (BEGIN block) and after processing is complete (END block). 

These blocks are typically used for setup and cleanup tasks. 

 

 Multi-File Processing: You can process multiple input files in a single Gawk 

command, and Gawk keeps track of the current file being processed using the 

‘ARGIND’ variable. 

 

 

 

 Error Handling: Gawk provides error handling mechanisms that allow you to 

deal with exceptional situations or invalid data gracefully. 

 



 

150 
 

 Formatted Output: We can use the printf function to format the output, allowing 

you to control the appearance of your results, align columns, and format numeric 

values. 

 

 Special Patterns: Gawk includes special patterns like ‘BEGIN’ (actions before 

processing starts), ‘END’ (actions after processing ends), and ‘NR’ (matching by 

record number), which are useful for implementing specific behaviors. 

 

 Data Processing: Gawk is not limited to text processing; you can use it for more 

advanced data manipulation tasks such as computing statistics, parsing 

structured data formats, and generating reports. 

 

 Regular Expressions in Awk: Gawk, as an extension of Awk, supports 

advanced regular expressions, providing more powerful text pattern matching 

capabilities. 

 

Using variables in gawk 

 Assigning Values to Variables: You can assign values to variables in Gawk 

using the ‘=’ operator. Variables do not require explicit data types; Gawk dynamically 

determines the type based on the assigned value. 

Script: variable_name = value 

Example 

my_number = 42 

To assign a string: my_string = "Hello, World!" 

 Using Variables in Your Script: We can use variables within your Awk script 

by referencing them with a dollar sign (‘$’) followed by the variable name. Variables are 

used to store and manipulate data in your script. 

Example 

# Using a variable in a print statement 

print "The value of my_number is: " my_number 

 

 

# Using a variable in an if condition 

if (my_number > 10) { 



 

151 
 

print "my_number is greater than 10" 

} 

Built-in Variables: Gawk provides several built-in variables that are automatically 

populated and can be used in your script. For example: 

 ‘NF’: The number of fields in the current record. 

 ‘NR’: The current record number. 

 ‘FS’: The input field separator. 

 ‘OFS’: The output field separator. 

 ‘RS’: The input record separator. 

 ‘ORS’: The output record separator. 

 

 User-Defined Functions with Variables: We can also create your own user-

defined functions that accept and return variables. This allows you to modularize your 

code and perform specific operations. 

Example 

# User-defined function that doubles a number 

function double(x) { 

return x * 2 

} 

# Use the function with a variable 

my_number = 7 

result = double(my_number) 

print "Double of " my_number " is " result 

 

Using structured commands 

 Many programs require some sort of logic flow control between the commands 

in the script. There are many commands that allows the script to skip over executed 

commands based on tested conditions. this commands called as structured commands. 

 Conditionals (if-else): Conditional statements allow you to execute different 

actions based on whether a certain condition is met.  

 

Example 

if (num % 2 == 0) { 

print "Even" 

} else { 



 

152 
 

print "Odd" 

} 

Loops (while and for) 

 Loops allow you to repeat a set of commands multiple times. Gawk provides both 

‘while’ and ‘for’ loops. 

Example for: While Loop 

i = 1 

while (i <= 5) { 

print i 

i++ 

} 

Example for: for Loop 

for (i = 1; i <= 5; i++) { 

print i 

} 

 

 

User-Defined Functions: If we define own functions in Gawk. Functions allow you to 

encapsulate a block of code and execute it by calling the function. 

Example, a function to calculate the square of a number 

function square(x) { 

return x * x 

} 

num = 4 

result = square(num) 

print "The square of " num " is " result 

 

 

 

 

 

Control Flow Commands (break and continue) 

 Gawk supports the ‘break’ and ‘continue’ statements for controlling the flow 

within loops. ‘break’ is used to exit a loop prematurely, and ‘continue’ is used to skip 

the current iteration and move to the next one. 



 

153 
 

Example 

for (i = 1; i <= 10; i++) { 

if (i % 2 == 0) { 

continue 

} 

print i 

} 

 

Formatting the printing 

Using echo with Escape Sequences: We can use escape sequences with the ‘echo’ 

command to format the output. Common escape sequences include: 

 ‘\n’: Newline 

 ‘\t’: Tab 

 ‘\b’: Backspace 

 ‘\r’: Carriage return 

Example 

echo "First Line\nSecond Line" 

Output 

First Line 

Second Line 

Using printf: The ‘printf’ command provides extensive control over output formatting. 

To specify the format of the output using format specifiers. For example, ‘%s’ is used 

for strings, ‘%d’ for integers, and ‘%f’ for floating-point numbers. 

Example 

printf "Name: %s, Age: %d\n" "John" 30 

Output 

Name: John, Age: 30 

 

 

 

 

 

Controlling Field Width and Alignment: The width and alignment of fields in ‘printf’ 

to make output columns align neatly. To specify a field width, use a number between 



 

154 
 

the ‘%’ sign and the format specifier. To use ‘-‘ to specify left alignment, or omit it for 

right alignment. 

Example 

printf "%-10s %5s\n" "Name" "Age" 

printf "%-10s %5d\n" "John" 30 

printf "%-10s %5d\n" "Alice" 25 

Output 

Name       Age 

John        30 

Alice       25 

Colorizing Output: We can add color to your output using ANSI escape codes. For 

example, to print text in red. 

Example 

echo -e "\e[31mThis is red text\e[0m" 

Output 

This will display "This is red text" in red color. 

Formatting Variables with printf: If we format variables using ‘printf’ as well. This is 

especially useful for aligning columns when printing tabular data. 

Example 

name="John" 

age=30 

printf "%-10s %5d\n" "$name" "$age" 

Alignment with column: If we want to align columns in a more structured way, you can 

use the ‘column’ command. It can automatically format and align columns from input 

text. 

Example 

echo -e "Name\tAge\nJohn\t30\nAlice\t25" | column -t -s $'\t' 

Output 

Name   Age 

John   30 

Alice  25 

 

Working with functions 

 The function is a command in Linux that is used to create functions or methods. 

It is used to perform a specific task or a set of instructions. It allows users to create 



 

155 
 

shortcuts for lengthy tasks making the command-line experience more efficient and 

convenient. 

Defining Functions 

Example 

say_hello() { 

    echo "Hello, World!" 

} 

Calling Functions: To call a function, simply use its name followed by parentheses 

Example for calling Function 

say_hello 

 

Passing Arguments to Functions: Functions can accept arguments, which are 

accessed using the special variables ‘$1’, ‘$2’, and so on, where ‘$1’ represents the 

first argument, ‘$2’ represents the second argument, and so on. Inside the function, you 

can refer to these variables. 

Example 

print_arguments() { 

echo "First argument: $1" 

echo "Second argument: $2" 

} 

Output 

print_arguments "Apple" "Banana" 

 

Returning Values from Functions: Functions can return values using the ‘return’ 

statement. The return value is stored in the special variable ‘$?’. 

Example 

add() { 

local result=$(( $1 + $2 )) 

return $result 

} 

Output 

 

add 5 7 

result=$? 

echo "The sum is $result" 



 

156 
 

 

Local Variables: To avoid variable naming conflicts between functions and the main 

script, you can declare variables as ‘local’ within a function. These local variables are 

only accessible within the function. 

Example 

calculate() { 

local result=$(( $1 * 2 )) 

echo "Inside function: result is $result" 

} 

result=10 

calculate $result 

echo "Outside function: result is $result" 

 

Using Functions in Your Scripts: To place function definitions anywhere in your script, 

typically at the top or bottom. Functions can be called from any part of the script. 

Example 

#!/bin/bash 

say_hello() { 

echo "Hello, World!" 

} 

print_arguments() { 

echo "First argument: $1" 

echo "Second argument: $2" 

} 

add() { 

local result=$(( $1 + $2 )) 

return $result 

} 

say_hello 

print_arguments "Apple" "Banana" 

 

add 5 7 

result=$? 

echo "The sum is $result" 

 



 

157 
 

Let us sum up 

grep: Searches for patterns in files using regular expressions. 

 

Usage: grep [options] 'pattern' [file] 

Options: 

-e : Specifies the pattern. 

-i : Ignore case (case-insensitive search). 

-r or -R : Recursively search directories. 

-v : Invert match (show lines that do not match). 

egrep: Extended grep that supports extended regular expressions. 

Usage: egrep [options] 'pattern' [file] 

Note: egrep is now deprecated; use grep -E instead. 

grep -E: grep with extended regular expression support. 

Usage: grep -E [options] 'pattern' [file] 

Options: Same as grep, with extended regex features. 

sed: Stream editor for filtering and transforming text. 

 

 

Check your progress 

1. What is a regular expression?*   

A) A mathematical formula   

B) A sequence of characters that define a search pattern   

C) A programming language   

D) A file format 

 

 

2. Which symbol is used to match any single character in a regular expression?*   

A) *     B) .     C) ^     D) $ 

 



 

158 
 

3. Which character is used to indicate zero or more occurrences of the previous 

element in a regular expression?*   

A) +    B) *     C) ?     D) | 

 

4. How do you match the beginning of a line in a regular expression?*   

A) ^    B) $    C) \b    D) \A 

 

5. Which sed command allows processing of multiline input?*   

A) n     B) N     C) p    D) d 

 

6. What is the purpose of the hold space in sed?*   

A) To store the current pattern space for later use   

B) To delete the current line   

C) To append text to the current line   

D) To replace text in the current line 

 

7. How do you negate a command in sed?*   

A) By using ! before the command   B) By using ^ before the command   

C) By using ~ before the command   D) By using # before the command 

 

8. Which command in sed is used to jump to a label?*   

A) b     B) t    C) g    D) h 

 

 

9. What is the basic syntax for replacing text in sed?*   

A) s/pattern/replacement/     B) r/pattern/replacement/   

C) c/pattern/replacement/     D) d/pattern/replacement/ 

 



 

159 
 

*Q10. Can sed commands be included directly in shell scripts?*   

A) Yes     B) No 

 

11. How do you create a sed script file for complex text processing tasks?*   

A) By writing commands in a file and using sed -f filename   

B) By writing commands directly in the terminal   

C) By creating an alias   

D) By using the awk command 

 

12. What is gawk primarily used for?*   

A) Text editing     B) Text pattern scanning and processing   

C) File compression    D) Network management 

 

13. How do you define a variable in gawk?*   

A) variable=value      B) var value   

C) let variable = value    D) variable := value 

 

14. Which command in gawk allows for conditional execution?*   

A) if    B) for     C) while   D) All of the above 

 

15. Which function in gawk is used to format and print output?*   

A) print    B) printf    C) echo    D) format 

 

16. How do you define a function in gawk?*   

A) function name { ... }     B) def name { ... }   

C) func name { ... }     D) name() { ... } 

 



 

160 
 

Here are the answers: 

1. B)     2. B)      3. B)      4. A)     5. B)      6. A)      7. A)      8. A)      9. A)   

10. A)       11. A)       12. B)      13. A)          14. D)      15. B)       16. A)  

 

Self Assessment Questions : 

1. Hoe to validate a phone number in Regular Expressions. 

2. Comment on sed editor gawk program. 

3. What is Regular Expression with example? 

4. Explain in detailed about Advanced sed commands with examples. 

5. Explain advanced gawk commands with examples. 

6. How to remove an HTML tag using sed commands 

7. Describe about regular expression in detail. 

8. What is reexamining gawk? Write about uses of variable in it. 

 

Open source e-content link 

https://www.geeksforgeeks.org/how-to-use-regular-expressions-regex-on-linux/ 

https://data-flair.training/blogs/regular-expression-in-linux/ 

                                                                   

  Glossary  

Usage: sed [options] 'script' [file] 

Options: 

-e : Allows multiple commands. 

-n : Suppresses automatic printing of pattern space. 

awk: A programming language for pattern scanning and processing. 

 

Usage: awk [options] 'pattern { action }' [file] 

Options: 

-F : Set the input field separator. 

perl: A programming language with powerful regular expression capabilities. 

 

Usage: perl -pe 'pattern' [file] 



 

161 
 

Options: 

-e : Allows execution of Perl code from the command line. 

-p : Loop over lines and print (similar to sed). 

find: Searches for files in a directory hierarchy. 

 

Usage: find [path] [options] [expression] 

Options: 

-name : Match files by name with a pattern. 

-regex : Match files by regex pattern. 

Regex Syntax and Concepts 

^: Anchors the match at the start of a line. 

 

Usage: ^pattern 

$: Anchors the match at the end of a line. 

 

Usage: pattern$ 

.: Matches any single character except a newline. 

 

Usage: a.b (matches acb, a1b, etc.) 

*: Matches zero or more of the preceding element. 

 

Usage: a* (matches a, aa, aaa, etc.) 

+: Matches one or more of the preceding element. 

 

Usage: a+ (matches a, aa, aaa, etc.) 

?: Matches zero or one of the preceding element (makes it optional). 

 

Usage: a? (matches `` or a) 

 

{n}: Matches exactly n occurrences of the preceding element. 

 

Usage: a{3} (matches aaa) 

{n,}: Matches n or more occurrences of the preceding element. 

 

Usage: a{2,} (matches aa, aaa, aaaa, etc.) 



 

162 
 

{n,m}: Matches between n and m occurrences of the preceding element. 

 

Usage: a{2,4} (matches aa, aaa, aaaa) 

[]: Defines a character class; matches any one of the enclosed characters. 

 

Usage: [abc] (matches a, b, or c) 

[^]: Defines a negated character class; matches any character not enclosed. 

 

Usage: [^abc] (matches any character except a, b, or c) 

|: Acts as a logical OR between patterns. 

 

Usage: a|b (matches a or b) 

(): Groups patterns together. 

 

Usage: (abc)+ (matches one or more occurrences of abc) 

\\: Escapes special characters. 

 

Usage: \. (matches a literal dot) 

\d: Matches any digit (in extended regex or Perl). 

 

Usage: \d (matches any digit, equivalent to [0-9]) 

\D: Matches any non-digit (in extended regex or Perl). 

 

Usage: \D (matches any non-digit) 

\w: Matches any word character (alphanumeric and underscore, in extended regex 

or Perl). 

 

 

e-books 

1. "sed & awk: UNIX Power Tools" by Dale Dougherty and Arnold Robbins 

2. "Mastering Regular Expressions" by Jeffrey E. F. Friedl 

 



 

163 
 

 

    Unit – V 

Objectives: 

 Expand your scripting capabilities by learning to use and write scripts for 
alternative shell environments beyond the default /bin/bash. 

 Create simple script utilities that can automate common tasks, improve 
productivity, and handle repetitive operations efficiently. 

 Develop scripts to interact with databases, web services, and email systems to 
automate data management, web scraping, and communication tasks. 

5.1 Working with Alternative Shells:  

Understanding the dash shell 

What Is the dash Shell?  

• The Debian dash shell has had an interesting past. It’s a direct descendant of 

the ash shell, a simple copy of the original Bourne shell available on Unix 

systems.  

• Kenneth Almquist created a small-scale version of the Bourne shell for Unix 

systems and called it the Almquist shell, which was then shortened to ash.  

• This original version of the ash shell was extremely small and fast but without 

many advanced features, such as command line editing or history features, 

making it difficult to use as an interactive shell  

• The NetBSD developers customized the ash shell by adding several new 

features, making it closer to the Bourne shell.  

• The Debian Linux distribution created its own version of the ash shell (called 

Debian ash, or dash) for inclusion in its version of Linux. For the most part, dash 

copies the features of the NetBSD 

version of the ash shell, providing the advanced command line editing 

capabilities.  

 

 



 

164 
 

The dash Shell Features : 

The dash command line parameters 

 

• Positional parameters  

Here are the positional parameter variables available for use in the dash shell:  

 

 

 



 

165 
 

User-defined environment variables: 

• The dash shell also allows you to set your own environment variables. As with 

bash, you can define a new environment variable on the command line by 

using the assignment statement: 

$ testing=10 ; export testing 

$ echo $testing 

10 

$ 

Without the export command, user-defined environment variables are visible 

only in the current shell or process.  

• The dash built-in commands  

 

 

 

 



 

166 
 

• Scripting in dash  

Using arithmetic 

Three ways to express a mathematical operation in the bash shell script: 

■ Using the expr command: expr operation 

■ Using square brackets: $[ operation ] 

■ Using double parentheses: $(( operation )) 

The dash shell supports the expr command and the double parentheses method but 

doesn’t support the square bracket method. This can be a problem if you have lots of 

mathematical operations that use the square brackets.  

 

The test command  

However, the test command available in the dash shell doesn’t recognize the == symbol 

for text comparisons. Instead, it only recognizes the = symbol. If you use the == 

symbol in your bash scripts, you need to change the text comparison symbol to just a 

single equal sign: 



 

167 
 

 

• The function Command  

The dash shell doesn’t support the function statement. Instead, in the dash shell you 

must define a function using the function name with parentheses. If you’re writing 

shell scripts that may be used in the dash environment, always define functions 

using the function name and not the function() statement:  

 



 

168 
 

 

• The zsh Shell  

Another popular shell that you may run into is the Z shell (called zsh). The zsh 

shell is an open source Unix shell developed by Paul Falstad.  

• The following are some of the features that make the zsh shell unique: 

■ Improved shell option handling 

■ Shell compatibility modes 

■ Loadable modules  

• A loadable module is the most advanced feature in shell design. As you’ve seen 

in the bash and dash shells, each shell contains a set of built-in commands 

that are available without the need for external utility programs.  

The zsh shell provides a core set of built-in commands, plus the capability to add more 

command modules.  

Parts of the zsh Shell  

Shell options Most shells use command line parameters to define the behavior 

of the shell. The zsh shell uses a few command line parameters to define the operation 

of the shell, but mostly it uses options to customize the behavior of the shell. You can 

set shell options either on the command line or within the shell itself using the set 

command. 

 

 

 

 

 



 

169 
 

 

Built-in commands 

 

 



 

170 
 

 

 

 

 



 

171 
 

 

• Add-in modules 

• There’s a long list of modules that provide additional built-in commands for the 

zsh shell, and the list continues to grow as resourceful programmers create new 

modules.  

 

• Viewing and adding modules 

The zmodload command is the interface to the zsh modules. You use this 

command to view, add, and remove modules from the zsh shell session. Using 

the zmodload command without any command line parameters displays the 

currently installed modules in your zsh shell: 

• % zmodload 

zsh/zutil 

zsh/complete 

zsh/main 

zsh/terminfo 

zsh/zle 

zsh/parameter 

%  



 

172 
 

 

Different zsh shell implementations include different modules by default. To add 

a new module, just specify the module name on the zmodload command line: 

% zmodload zsh/zftp 

%  

Scripting with zsh  

• Mathematical operations  

• As you would expect, the zsh shell allows you to perform mathematical functions 

with ease. In the past, the Korn shell has led the way in supporting mathematical 

operations by providing support for floating-point numbers. The zsh shell has full 

support for floating point numbers in all its mathematical operations!  

Performing calculations The zsh shell supports two methods for performing 

mathematical operations:  

■ The let command  

■ Double parentheses 

•  When you use the let command, you should enclose the operation in double 

quotation marks to allow for spaces: 

% let value1=" 4 * 5.1 / 3.2 " 

% echo $value1 

6.3750000000 

%  

• The second method is to use the double parentheses. This method 

incorporates two techniques for defining the mathematical operation: 

% value1=$(( 4 * 5.1 )) 

% (( value2 = 4 * 5.1 )) 

% printf "%6.3f\n" $value1 $value2 

20.400 

20.400 

%  

 



 

173 
 

 

 

Notice that you can place the double parentheses either around just the operation 

(preceded by a dollar sign) or around the entire assignment statement. Both methods 

produce the same results.  

Mathematical functions 

With the zsh shell, built-in mathematical functions are either feast or famine. The 

default zsh shell doesn’t include any special mathematical function. However, if you 

install the zsh/mathfunc module, you have more math functions than you’ll most 

likely ever need: 

• % value1=$(( sqrt(9) )) 

zsh: unknown function: sqrt 

% zmodload zsh/mathfunc 

% value1=$(( sqrt(9) )) 

% echo $value1 

3. 

%  

• Structured commands 

• The zsh shell provides the usual set of structured commands for 

your shell scripts: 

■ if-then-else statements 

■ for loops (including the C-style) 

■ while loops  

■ until loops 

■ select statements 

■ case statements  

The zsh shell uses the same syntax for each of these structured commands that 

you’re used to from the bash shell. The zsh shell also includes a different structured 

command called repeat. The repeat command uses this format: 

repeat param do commands done 



 

174 
 

 

Functions 

The zsh shell supports the creation of your own functions either using the 

function command or by defining the function name with parentheses: 

% function functest1 { 

> echo "This is the test1 function" 

} 

% functest2() { 

> echo "This is the test2 function" 

}  

% functest1 

This is the test1 function 

% functest2 

This is the test2 function 

%  

 

5.2 Writing Simple Script Utilities:  

Automating backups 

 Whether you’re responsible for a Linux system in a business environment or 

just using it at home, the loss of data can be catastrophic. 

 To help prevent bad things from happening, it’s always a good idea to perform 

regular backups (or archives). 



 

175 
 

 

 However, what’s a good idea and what’s practical are often two separate 

things. 

 Trying to arrange a backup schedule to store important files can be a 

challenge.  

Archiving data files 

 If you’re using your Linux system to work on an important project, you can 

create a shell script that automatically takes snapshots of specific directories. 

 Designating these directories in a configuration file allows you to change them 

when a particular project changes. 

 This helps avoid a time consuming restore process from your main archive 

files. 

 This section shows you how to create an automated shell script that can take 

snapshots of specified directories and keep an archive of your data’s past 

versions. 

Obtaining the required functions: 

 The workhorse for archiving data in the Linux world is the tar command .  

 The tar command is used to archive entire directories into a single file. Here’s 

an example of creating an archive fi le of a working directory using the tar 

command: 

 The tar command responds with a warning message that it’s removing the 

leading forward slash from the pathname to convert it from an absolute 

pathname to a relative pathname  

 This allows you to extract the tar archived files anywhere you want in your 

filesystem.  

 You can accomplish this by redirecting STDERR to the /dev/null fi le  

 Because a tar archive file can consume lots of disk space, it’s a good idea to 

compress the file. You can do this by simply adding the -z option. This 

compresses the tar archive file into a gzipped tar file, which is called a tarball.  

. 



 

176 
 

 

 

Creating a daily archive location  

  If you are just backing up a few files, it’s fine to keep the archive in your 

personal directory.  

 However, if several directories are being backed up, it is best to create a central 

repository archive directory 

 

 After you have your central repository archive directory created, you need to 

grant access to it for certain users. If you do not do this, trying to create files in 

this directory fails, as shown here:  

 

• You could grant the users needing to create files in this directory permission via 

sudo or create a user group. In this case, a special user group is created, 

Archivers:  

 



 

177 
 

 

After a user has been added to the Archivers group, the user must log out and log back 

in for the group membership to take effect. Now files can be created by this group’s 

members without the use of super-user privileges: 

 

Creating an hourly archive script 

 If you are in a high-volume production environment where files are changing 

rapidly, a daily archive might not be good enough. 

 If you want to increase the archiving frequency to hourly, you need to take 

another item into consideration 

When backing up files hourly and trying to use the date command to timestamp each 

tarball, things can get pretty ugly pretty quickly. Sifting through a directory of tarballs 

with filenames looking like this is tedious: 

archive010211110233.tar.gz 

Instead of placing all the archive files in the same folder, you can create a directory 

hierarchy for your archived files. 



 

178 
 

 

• First, the new directory /archive/hourly must be created, along with the appropriate 

permissions set upon it.  

 

]  



 

179 
 

 

• Running the hourly archive script  

• As with the Daily_Archive.sh script, it’s a good idea to test the Hourly_Archive.sh 

script before putting it in the cron table. Before the script is run, the permissions must 

be modified. Also, the hour and minute is checked via the date command. Having 

the current hour and minute allows the final archive filename to be verified for 

correctness:  

 

Managing User Accounts: 

Managing user accounts is much more than just adding, modifying, and deleting accounts. 

 You must also consider security issues, the need to preserve work, and the accurate 

management of the accounts.  

 This can be a time-consuming task.  

 



 

180 
 

 

Obtaining the required functions: 

Deleting an account is the more complicated accounts management task. When 

deleting an account, at least four separate actions are required: 

1. Obtain the correct user account name to delete. 

2. Kill any processes currently running on the system that belongs to that 

account. 

3. Determine all files on the system belonging to the account. 

4. Remove the user account.  

Obtaining the required functions 

Deleting an account is the more complicated accounts management task. When 

deleting an account, at least four separate actions are required: 

1. Obtain the correct user account name to delete.  

2. Kill any processes currently running on the system that belongs to that account. 

3. Determine all fi les on the system belonging to the account. 

4.  Remove the user account. 

  It’s easy to miss a step. The shell script utility in this section helps you avoid 

making such mistakes. 

Getting the correct account name : 

The first step in the account deletion process is the most important: obtaining 

the correct user account name to delete. Because this is an interactive script, you 

can use the read command to obtain the account name. you can use the -t option 

on the read command and timeout after giving the script user 60 seconds to 

answer the question:  

 echo "Please enter the username of the user " 

echo -e "account you wish to delete from system: \c" 

read -t 60 ANSWER  

 

 



 

181 
 

 

Creating a function to get the correct account name: 

The first thing you need to do is declare the function’s name, get_answer. Next, clear 

out any previous answers to questions your script user gave using the unset command  

function get_answer { 

# 

unset ANSWER 

• To ask the script user what account to delete, a few variables must be set and 

the get_answer function should be called. Using the new function makes the 

script code much simpler: 

• LINE1="Please enter the username of the user " 

LINE2="account you wish to delete from system:" 

get_answer 

USER_ACCOUNT=$ANSWER  

Verifying the entered account name  

Because of potential typographical errors, the user account name that was 

entered should be verified. This is easy because the code is already in place to 

handle asking a question: 

LINE1="Is $USER_ACCOUNT the user account " 

LINE2="you wish to delete from the system? [y/n]" 

get_answer  

 

 



 

182 
 

 

Determining whether the account exists  

 The user has given us the name of the account to delete and has verified it.  

 Now is a good time to double-check that the user account really exists on the 

system. 

 The -w option allows an exact word match for this particular user account: 

USER_ACCOUNT_RECORD=$(cat /etc/passwd | grep -w $USER_ACCOUNT) 

Removing any account processes 

 The script has obtained and verified the correct name of the user account to be 

deleted. 

 In order to remove the user account from the system, the account cannot own 

any processes currently running.  

 Thus, the next step is to fi nd and kill off those processes. 

 Here the script can use the ps command and the -u option to locate any 

running processes owned by the account.  

•  ps -u $USER_ACCOUNT >/dev/null #Are user processes running?  

Finding account files : 

 When a user account is deleted from the system, it is a good practice to archive 

all the fi les that belonged to that account. 

 Along with that practice, it is also important to remove the fi les or assign their 

ownership to another account. 

Removing the account  

Finally, we get to the main purpose of our script, actually removing the user account 

from the system. Here the userdel command is used: 

userdel $USER_ACCOUNT 

Monitoring Disk Space: 

 One of the biggest problems with multi-user Linux systems is the amount of 

available disk space.  



 

183 
 

 

 In some situations, such as in a file-sharing server, disk space can fill up almost 

immediately just because of one careless user. 

 Obtaining the required functions:  

• The first tool you need to use is the du command This command displays the 

disk usage for individual files and directories.  

The -s option lets you summarize totals at the directory level. This comes in handy 

when calculating the total disk space used by an individual user. Here’s what it looks 

like to use the du command to summarize each user’s $HOME directory for the /home 

directory contents: 

 

 

The -s option works well for users’ $HOME directories, but what if we wanted to 

view disk consumption in a system directory such as /var/log? 

 

 



 

184 
 

 

• The listing quickly becomes too detailed. The -S (capital S) option works better 

for our purposes here, providing a total for each directory and subdirectory 

individually. This allows you to pinpoint problem areas quickly:  

 

Because we are interested in the directories consuming the biggest chunks of 

disk space, the sort command is used on the listing produced by du: The -n option 

allows you to sort numerically. The -r option lists the largest numbers first 

(reverse order). This is perfect for finding the largest disk consumers. 

 

 

 



 

185 
 

 

Creating the script: 

 To save time and effort, the script creates a report for multiple designated 

directories.  

 A variable to accomplish this called CHECK_DIRECTORIES is used. For our 

purposes here, the variable is set to just two directories: 

   CHECK_DIRECTORIES=" /var/log /home“ 

• Each time the for loop iterates through the list of values in the variable 

CHECK_DIRECTORIES, it assigns to the DIR_CHECK variable the next value 

in the list: 

 

Running the script: 

 



 

186 
 

 

 

5.3 Producing Scripts for Database, Web, and E-Mail 

Data base: 

• A database is an organized collection of structured information, or data, typically 

stored electronically in a computer system. A database is usually controlled by 

a database management system (DBMS).  

https://www.oracle.com/in/database/what-is-database/


 

187 
 

 

Atomicity: 

• By this, we mean that either the entire transaction takes place at once or 

doesn’t happen at all. There is no midway i.e. transactions do not occur 

partially. Each transaction is considered as one unit and either runs to 

completion or is not executed at all. It involves the following two operations.   

—Abort: If a transaction aborts, changes made to the database are not visible.  

—Commit: If a transaction commits, changes made are visible.  

Atomicity is also known as the ‘All or nothing rule’.  

 

Consistency: 

• This means that integrity constraints must be maintained so that the database 

is consistent before and after the transaction. It refers to the correctness of a 

database. Referring to the example above,  

The total amount before and after the transaction must be maintained.   

    

 



 

188 
 

 

Total before T occurs = 500 + 200 = 700.  

Total after T occurs = 400 + 300 = 700.  

Therefore, the database is consistent. Inconsistency occurs in case T1 completes 

but T2 fails. As a result, T is incomplete.   

Isolation: The term 'isolation' means separation. In DBMS, Isolation is the property of 

a database where no data should affect the other one and may occur concurrently. In 

short, the operation on one database should begin when the operation on the first 

database gets complete. It means if two operations are being performed on two different 

databases, they may not affect the value of one another. In the case of transactions, 

when two or more transactions occur simultaneously, the consistency should remain 

maintained. Any changes that occur in any particular transaction will not be seen by 

other transactions until the change is not committed in the memory. 

 

Durability: Durability ensures the permanency of something. In DBMS, the term 

durability ensures that the data after the successful execution of the operation becomes 

permanent in the database. The durability of the data should be so perfect that even if 

the system fails or leads to a crash, the database still survives.  

• Using a MySQL Database: 

system@system-virtual-machine:~/Riyaz$ sudo apt update 

• system@system-virtual-machine:~/Riyaz$ sudo apt install postgresql  

postgresql-contrib  

system@system-virtual-machine:~/Riyaz$ sudo –i -u postgres  

sudo] password for system: 

postgres@system-virtual-machine:~$ psql  



 

189 
 

 

psql (14.5 (Ubuntu 14.5-0ubuntu0.22.04.1)) 

Type "help" for help. 

 

The mysql commands: 

The mysql program uses two different types of commands: 

■ Special mysql commands 

■ Standard SQL statements  

The mysql program uses its own set of commands that let you easily control the 

environment and retrieve information about the MySQL server. The mysql commands 

use either a full name (such as status) or a shortcut (such as \s).  

mysql> \s 

-------------- 

mysql Ver 14.14 Distrib 5.5.38, for debian-linux-gnu (i686) using readline 6.3 

Connection id:  

Current database: 

Current user: root@localhost 

SSL: Not in use 

Current pager: stdout 

Using outfile: '' 

Using delimiter: ; 

Server version: 5.5.38-0ubuntu0.14.04.1 (Ubuntu) 

Protocol version: 10 

Connection: Localhost via UNIX socket 

Server characterset: latin1 

Db characterset: latin1 

Client characterset: utf8 

Conn. characterset: utf8 

UNIX socket: /var/run/mysqld/mysqld.sock 

Uptime: 2 min 24 sec 

Threads: 1 Questions: 575 Slow queries: 0 Opens: 421 Flush tables: 1 

Open tables: 41 Queries per second avg: 3.993 



 

190 
 

 

--------------  

 

 

 



 

191 
 

 

• Creating a database:  

The MySQL server organizes data into databases. A database usually holds 

the data for a single application, separating it from other applications that use 

the database server.  

• Creating a separate database for each shell script application helps eliminate 

confusion and data mix-ups. 

Here’s the SQL statement required to create a new database: 

CREATE DATABASE name;  

• mysql> CREATE DATABASE mytest; 

Query OK, 1 row affected (0.02 sec)  

 

Creating a table 

The MySQL server is considered a relational database. In a relational database, data is 

organized by data fields, records, and tables. A data field is a single piece of information, 

such as an employee’s last name or a salary. A record is a collection of related data 

fields, such as the employee ID number, last name, first name, address, and salary. 

Each record indicates one set of the data fields. 



 

192 
 

 

 

• The empid data field also specifies a data constraint. A data constraint restricts 

what type of data you can enter to create a valid record. The not null data 

constraint indicates that every record must have an empid value specified. 

Finally, the primary key defines a data field that uniquely identifies each individual 

record. This means that each data record must have a unique empid value in the 

table. 

•  Inserting and deleting data  

• you use the INSERT SQL command to insert new data records into the table. 

Each INSERT command must specify the data field values for the MySQL  

 



 

193 
 

• server to accept the record. Here’s the format of the INSERT SQL command: 

INSERT INTO table VALUES (...)  

 

• mysql> INSERT INTO employees VALUES (1, 'Blum', 'Rich', 25000.00); 

Query OK, 1 row affected (0.35 sec)  

mysql> INSERT INTO employees VALUES (2, 'Blum', 'Barbara', 45000.00); 

Query OK, 1 row affected (0.00 sec) 

You should now have two data records in your table 

• Here’s the basic DELETE command format: 

DELETE FROM table;  

To just specify a single record or a group of records to delete, you must use the 

WHERE clause. The WHERE clause allows you to create a filter that identifies 

which records to remove. You use the WHERE clause like this: 

• DELETE FROM employees WHERE empid = 2; 

This restricts the deletion process to all the records that have an empid value of 

2. When you execute this command, the mysql program returns a message 

indicating how many records matched the filter: 

• mysql> DELETE FROM employees WHERE empid = 2; 

Query OK, 1 row affected (0.29 sec) 

As expected, only one record matched the filter and was removed.  

Querying data  

• Here’s the basic format of a SELECT statement: 

SELECT datafields FROM table  



 

194 
 

 

You can use one or more modifiers to define how the database server returns the data 

requested by the query. Here’s a list of commonly used modifiers: 

■ WHERE: Displays a subset of records that meet a specific condition 

■ ORDER BY: Displays records in a specified order 

■ LIMIT: Displays only a subset of records 

 

• Sending commands to the server After establishing the connection to the 

server, you’ll want to send commands to interact with your database. There are 

two methods to do this: 

• ■ Send a single command and exit. 

■ Send multiple commands.  

To send a single command, you must include the command as part of the mysql 

command line. For the mysql command, you do this using the -e parameter: 

$ cat mtest1 

#!/bin/bash 

# send a command to the MySQL server 

MYSQL=$(which mysql) 

$MYSQL mytest -u test -e 'select * from employees' 



 

195 
 

 

If you need to send more than one SQL command, you can use file redirection 

To redirect lines in the shell script, you must define an end of file string. The end of file 

string indicates the beginning and end of the redirected data. 

 

• Formatting data  

The standard output from the mysql command doesn’t lend itself to data retrieval. 

If you need to actually do something with the data you retrieve, you need to do 

some fancy data manipulation. This section describes some of the tricks you can 

use to help extract data from your database reports.  

• The mysql program also supports an additional popular format, called Extensible 

Markup Language (XML). This language uses HTML-like tags to  



 

196 
 

 

• identify data names and values. For the mysql program, you do this using the -X 

command line parameter:  

 

Using XML, you can easily identify individual rows of data, along with the individual 

data values in each record. You can then use standard Linux string handling functions 

to extract the data you need! 

Using the Web: 

• Almost as old as the Internet itself, the Lynx program was created in 1992 by 

students at the University of Kansas as a text-based browser. Because it’s 

text-based, the Lynx program allows you to browse websites directly from a 

terminal session, replacing the fancy graphics on web pages with HTML text 

tags.  

• Lynx uses the standard keyboard keys to navigate around the web page. Links 

appear as highlighted text within the web page. Using the right-arrow key 

allows you to follow a link to the next web page.  

Installing Lynx 

• Even though the Lynx program is somewhat old, it’s still in active development. 

At the time of this writing, the latest version of Lynx is version 2.8.8, released 

in June 2010, with a new release in development. Because of  

 



 

197 
 

 

• its popularity among shell script programmers,  many Linux distributions install 

the Lynx program in their default installations.  

• The lynx command line: 

            The lynx command line command is extremely versatile in what information 

it can retrieve from the remote website. When you view a web page in your browser, 

you’re only seeing part of the information that’s transferred to your browser. Web 

pages consist of three types of data elements: 

 

■ HTTP headers 

■ Cookies 

■ HTML content  

• HTTP headers provide information about the type of data sent in the 

connection, the server sending the data, and the type of security used in the 

connection. If you’re sending special types of data, such as video or audio clips, 

the server identifies that in the HTTP headers. The Lynx program allows you to 

view all the HTTP headers sent within a web page session. 

• If you’ve done any type of web browsing, no doubt you’re familiar with web 

page cookies. Websites use cookies to store data about your website visit for 

future use. Each individual site can store information, but it can only access the 

information it sets. The lynx command provides options for you to view cookies 

sent by web servers, as well as reject or accept specific cookies sent from 

servers.  

• The Lynx program allows you to view the actual HTML content of the web page 

in three different formats: 

■ In a text-graphics display on the terminal session using the curses 

graphical library 

■ As a text file, dumping the raw data from the web page 

■ As a text file, dumping the raw HTML source code from the web page  

 

 



 

198 
 

 

• The Lynx configuration file  

•   The lynx command reads a configuration file for many of its parameter 

settings. By default, this file is located at /usr/local/lib/lynx.cfg, although you’ll find 

that many Linux distributions change this to the /etc directory (/etc/lynx.cfg) (the 

Ubuntu distribution places the lynx.cfg file in the /etc/lynx-cur folder). The lynx.cfg 

configuration file groups related parameters into sections to make finding 

parameters easier. Here’s the format of an entry in the configuration file:  

• PARAMETER:value 

where PARAMETER is the full name of the parameter (often, but not always in 

uppercase letters) and value is the value associated with the parameter.  

such as the ACCEPT_ALL_COOKIES parameter,  

• The most common configuration parameters that you can’t set on the command 

line are for the proxy servers. Some networks (especially corporate networks) 

use a proxy server as a middleman between the client’s browser and the 

destination website server.  

Instead of sending HTTP requests directly to the remote web server, client 

browsers must send their requests to the proxy server. The proxy server in turn sends 

the requests to the remote web server, retrieves the results, and forwards them back 

to the client browser. 

Using E-Mail :The main tool you have available for sending e-mail messages from 

your shell scripts is the Mailx program. Not only can you use it interactively to read 

and send messages, but you can also use the command line parameters to specify 

how to send a message.  

 

 

 

 

 

 

 



 

199 
 

 

The Mailx program sends the text from the echo command as the message body. 

This provides an easy way for you to send messages from your shell scripts. Here’s a 

quick example:  

 

This script does not assume that the Mailx program is located in the standard 

location. It uses the which command to determine just where the mail program is. After 

calculating the result of the factorial function, the shell script uses the mail command to 

send the message to the user-defined $USER environment variable, which should be 

the person executing the script. 



 

200 
 

 

5.4 What is Python?  

• Python is an object-oriented interpreted language that is designed to be easy to 

use and to aid Rapid Application Development. This is achieved by the use of 

simplified semantics in the language. 

• Python was created at the end of the 1980s, towards the very end of 

December 1989, by the Dutch developer Guido van Rossum. The majority of 

the design of the language aims for clarity and simplicity  

• If you are using another Linux distribution or Python 3 is not found for any reason, 

you can install it like this: On RedHat based distributions: $ sudo yum install 

python36 On Debian based distributions:  

• $ sudo apt-get install python3.6   

• We can see that we are presented with >>> the prompt and this is known as the 

REPL console. We should emphasize that this is a scripting language and, like 

bash and Perl, we will normally execute code through the text files that we create. 

Those text files will normally be expected to have a QZ suffix to their name.  

• While working with REPL, we can print the version independently by importing 

a module. 

In Perl, we will use the keyword; in bash we will use the command source; and  



 

201 
 

 

• in Python 

we use import: 

 

>>>import sys 

With the module loaded, we can now investigate the object-oriented nature of Python by 

printing the version: 

>>> sys.version  

 

We will navigate to the TZT object within our namespace and call the version method 

from that object.  

Finally, to close the REPL, we will use Ctrl + D in Linux or Ctrl + Z in Windows.  

• Saying Hello World the Python way: 

The Print function includes the newline and we do not need semicolons at the 

end of the line. We can 

see the edited version of $HOME/bin/hello.py in the following example: 

 

• We will still need to add the execute permission, but we can run the code as 

earlier using Chmod. This is shown in the following command but we should be 

a little used to this now: 

$ chmod u+x $HOME/bin/hello.py  

Finally, we can now execute the code to see our greeting. Similarly, you can 

run the file using the Python interpreter from the command line like this: 

• $ python3 $HOME/bin/hello.py 

• Or in some Linux distributions, you can run it like this: 

$ python36 $HOME/bin/hello.py  

 

 



 

202 
 

 

• Pythonic arguments: 

We should know by now that we will want to pass command-line arguments to 

Python and we can do this using the BSHW array. However, we are more like 

bash; with Python we combine the program name into the array with the other 

arguments.  

 

• Supplying arguments: 

 

•  



 

203 
 

 

• Counting arguments : The script name is the first argument at index  of the 

array. So, if we try to count the arguments, then the count should always be at 

the very least 1.  

• In other words, if we have not supplied arguments, the argument count will be 

1. To count the items in an array, we can use the len() function.  

 

Significant whitespace:  

The indent level of your code defines the block of code to which it belongs. So 

far, we have not indented the code we have created past the start of the line. This means 

that all of the code is at the same indent level and belongs to the same code block.  

Rather than using brace brackets or the do and done keywords to define the 

code block, we use indents. If we indent with two or four spaces or even tabs, then we 

must stick to those spaces or tabs. When we return to the previous indent level, we 

return to the previous code block. 



 

204 
 

 

 

 

 

 

 

 

 



 

205 
 

 

 

Reading user input : 

 



 

206 
 

 

Using Python to write to files : 

We will start by making a copy of our existing args.py We will copy this 

$HOME/bin/file.py. The new file.py should read similar to the following screenshot and 

have the execute permission set: 



 

207 
 

 

String manipulation:  

Dealing with strings in Python is very simple: you can search, replace, change character case, 

and perform other manipulations with ease: To search for a string, you can use the find method 

like this: 

 



 

208 
 

 

 

 

 

 

 



 

209 
 

 

Producing Scripts for Database, Web, and E-Mail: Writing database shell scripts-

Using the Internet from your scripts-Emailing reports from scripts 

Using Python as a Bash Scripting Alternative: Technical requirements-Python 

Language-Hello World the Python way-Pythonic arguments-Supplying arguments-

Counting arguments-Significant whitespace-Reading user input-Using Python to write 

to files-String manipulation. 

 

Unit Summary  

This chapter walked through how to use some advanced features within your shell 

scripts. First, we discussed how to use the MySQL server to store persistent data for 

your applica- tions. Just create a database and unique user account in MySQL for your 

application, and grant the user account privileges to only that database. You can then 

create tables to store the data that your application uses. The shell script uses the mysql 

command line tool to interface with the MySQL server, submit SELECT queries, and 

retrieve the results to display. Next we discussed how to use the lynx text-based browser 

to extract data from websites on the Internet. The lynx tool can dump all the text from a 

web page, and you can use stan- dard shell programming skills to store that data and 

search it for the content you’re look- ing for. Finally, we walked through how to use the 

standard Mailx program to send reports using the Linux e-mail server installed on your 

Linux system. The Mailx program allows you to easily send output from commands to 

any e-mail address. 

 

 

Let us sum up 

The shell script uses the mysql command line tool to interface with the MySQL 

server, submit SELECT queries, and retrieve the results to display. 

A major difference between Python and most other languages is that additional 

whitespace can mean something. The indent level of your code defines the 

block of code to which it belongs. 

 



 

210 
 

Check your progress 

1. What is a primary advantage of using the dash shell over the bash shell?*   

A) More features     B) Faster and smaller   

C) Easier syntax     D) Better support for scripting 

 

2. Which of the following is a characteristic of the dash shell?*   

A) It supports advanced scripting features.   

 

B) It is a non-POSIX-compliant shell.   

C) It is optimized for speed and low memory usage.   

D) It is the default shell on all Linux distributions. 

 

3. What makes the zsh shell stand out compared to bash and dash?*   

A) It is simpler than both.   

B) It combines features from bash, ksh, and tcsh.   

C) It is the smallest shell available.   

D) It has no scripting capabilities. 

 

4. Which of the following is a feature of zsh scripting?*   

A) Limited compatibility with other shells.   

B) Built-in support for floating-point arithmetic.   

C) Only supports basic scripting features.   

D) No support for arrays. 

 

5. Which command is commonly used in shell scripts to create backups?*   

A) cp     B) rm    C) mv    D) du 

 



 

211 
 

 

 

6. Which command would you use in a script to add a new user in Linux?*   

A) usermod    B) useradd    C) passwd    D) chmod 

 

7. What command can be used to check disk space usage in a script?*   

A) ls    B) df     C) du     D) ps 

8. Which command can be used to connect to a MySQL database from a shell 

script?*   

A) mysql    B) dbconnect    C) sqlconnect   D) 

connectdb 

 

9. Which command can be used to download a file from the internet in a shell 

script?*   

A) getfile    B) wget    C) fetch    D) netget 

 

10. Which command is commonly used to send emails from a shell script?*   

A) mail    B) sendemail    C) sendmail    D) netmail 

 

11. Which Python version introduced significant changes in syntax and features 

over the previous version?*   

A) Python 2.7   B) Python 1.6   C) Python 3.0   D) Python 

3.9 

 

12. What is the correct file extension for Python scripts?*   

A) .bash    B) .py    C) .sh     D) .pyscript 

 

 



 

212 
 

 

 

13. What is the correct Python syntax to print "Hello World"?*   

A) echo "Hello World"     B) print "Hello World"   

C) printf("Hello World")     D) print("Hello World") 

 

14. Which module in Python is commonly used for parsing command-line 

arguments?*   

A) sys    B) argparse    C) getopt    D) os 

15. Which symbol is used to denote comments in Python?*   

A) #     B) //    C) /* */    D) <!-- --> 

16. Which function is used to get number of command-line arguments in 

Python?*   

A) len(argv)   B) argc   C) len(sys.argv)   D) argc(sys.argv) 

 

17. What is the significance of whitespace in Python?*   

A) It is ignored.      B) It separates commands.   

C) It is used to denote blocks of code.   D) It only matters in strings. 

 

18. Which function is used to read input from the user in Python?*   

A) read()    B) input()    C) get()    D) scanf() 

 

19. Which mode is used to open a file for writing in Python?*   

A) "r"    B) "rw"    C) "w"    D) "a" 

 

20. Which method is used to convert a string to uppercase in Python?*   

A) upper()    B) toUpperCase()   C) to_upper()    D) upcase() 

 



 

213 
 

 

 

Here are the answers: 

1.B)    2.C)    3.B)    4.B)   5.A)     6.B)    7.B)    8.A)    9.B)    10.C)     11.B)    

12.B)     13.D)     14.B)     15.A)      16.C)       17.C)      18.B)      19.C)    20.A) 

 

Self Assesment Questions : 

1. How dash shell is different from bash shell? 

2. Summarize the basic features of Linux. 

3. Compare dash shell and z-shell in advanced shell scripting. 

4. Bash scripting using python in advanced shell scripting. 

5. Write a shell script program to demonstrate to connect a PostgreSQL 

database and performing CRUD operations. 

6. Give some example using python as a bash scripting. 

Open source e-content links 

1. Richard Blum, Christine Bresnahan, ―Linux Command Line and Shell  

Scripting BIBLE‖, Wiley Publishing, 3rd Edition, 2015.Chapters: 3, 11 to 

14, 16 to 25. 

2. Mokhtar Ebrahim, Andrew Mallett, ―Mastering Linux Shell Scripting‖,  

Packt Publishing, 2nd Edition, 2018. Chapter: 14. 

https://www.javatpoint.com/linux-shell 

https://youtube.com/playlist?list=PLS1QulWo1RIaAsfcLW-Jk-

Cx3JGRP8tjh&si=irjoFN25pPTosRX_ 

 

Glossary 

python or python3: Invokes the Python interpreter. 

 

Usage: python [options] [script] [args...] 

 



 

214 
 

python -m: Run a Python module as a script. 

 

Usage: python -m module [args...] 

Examples: python -m http.server (start a simple HTTP server) 

 

python -c: Execute a Python command passed as a string. 

 

Usage: python -c 'command' 

Example: python -c 'print("Hello, World!")' 

python -i: Start an interactive interpreter session after running a script. 

 

Usage: python -i script.py 

 

str.replace(): Replaces substrings in a string. 

 

Usage: new_string = original_string.replace('old', 'new') 

str.split(): Splits a string into a list. 

 

Usage: list_of_strings = string.split('delimiter') 

str.join(): Joins a list of strings into a single string. 

 

Usage: joined_string = delimiter.join(list_of_strings) 

str.strip(): Removes leading and trailing whitespace. 

 

Usage: clean_string = string.strip() 

 

e-books 

 

1.Python for Unix and Linux System Administration by Noah Gift and Jeremy M. 

Jones 

2. "Linux Shell Scripting with Bash" by Ken O. Burtch 


